浙江省温州市瓯海区三校联考2021-2022学年八年级上学期12月月考数学试卷
试卷更新日期:2022-01-25 类型:月考试卷
一、单选题
-
1. 下列“祝你成功”的首拼字母中,属于轴对称图形的是( )A、 B、 C、 D、2. 根据下列表述,能够确定具体位置的是( )A、北偏东25°方向 B、距学校800米处 C、温州大剧院音乐厅8排 D、东经20°北纬30°3. 在△ABC中,若AB=3,BC=4,且周长为奇数,则第三边AC的长可以是( )A、1 B、3 C、4 D、54. 如果 a>b,那么下列各式中正确的是( )A、a+1<b+1 B、-a+3<-b+3 C、-a>-b D、5. 已知点A(a+9,2a+6)在y轴上,a的值为( )A、﹣9 B、9 C、3 D、﹣36. 如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是( )A、4 B、5 C、6 D、87. 某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )A、24人 B、23人 C、22人 D、不能确定8. 在平面直角坐标系中,已知点A(3,﹣3),在坐标轴上确定一点B,使△AOB为等腰三角形,则符合条件的点B共有( )个A、5 B、6 C、7 D、89. 如图,在△ABC的右侧以AC为边构造等腰Rt△ACD,其中∠CAD为90°,在BC的延长线上取一点E,使∠ADE=∠ACB.若DE=BC,且四边形ACED的面积为8,则AB的长为( )A、2 B、4 C、 D、810. 对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5).已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则△ABC的面积是( )A、12 B、14 C、16 D、18
二、填空题
-
11. 根据“3x与5的和是负数”可列出不等式 .12. 命题“a<2a”是 命题(填“真”或“假”).13. 在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 .14. 如图,在△ABC中,∠ACB=90°,D在BC上,E是AB的中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于 .15. 如图,等腰△ABC中,AB=AC=5,BC=6,BD⊥AC,则BD=.16. 不等式组的整数解共有4个,则a的取值范围是 .17. 如图,在长方形ABCD中,AB=2,BC=4,点E在边AD上,连接BE,将△EAB沿BE翻折得到△EA′B,延长EA′交BC于点F,若四边形EFCD的周长为9,则AE的长为18. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是.
三、解答题
-
19. 解不等式组 , 并把解集表示在数轴上.20. 如图,已知点B、F、C、E在同一直线上,AB∥DE,AB=DE,BF=CE.求证:AC∥DF.21. 在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形,如图,已知整点A(2,2),B(4,1),请在所给网格区域(含边界)上按要求画整点三角形.(1)、在图1中画一个等腰△PAB,使点P的横坐标大于点A的横坐标.(2)、在图2中画一个直角△PAB,使点P的横坐标等于点P,B的纵坐标之和.22. 如图,已知点P是等边△ABC内一点,连结PA,PB,PC,D为△ABC外一点,且∠DAC=∠PAB,AD=AP,连结DP,DC.(1)、求证:△ADC≌△APB.(2)、若PA=4,PB=3,PC=5,求∠APB的度数.23. 某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
A
B
进价(万元/套)
1.5
1.2
售价(万元/套)
1.65
1.4
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(1)、该商场计划购进A,B两种品牌的教学设备各多少套?(2)、通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?24. 如图,在平面直角坐标系中,已知点 , 点 , 其中a,b满足 , 点P从点O出发,沿的路径以每秒2个单位的速度向终点A运动,设运动时间为t秒.(1)、求线段的值.(2)、是否存在t,使得为等腰三角形,若存在,请求出所有t的值,若不存在,请说明理由.(3)、当平分时,求t的值.(4)、线段绕点A按逆时针方向旋转90得到线段 , 连结 , 若该平面内存在点 , 使得与的面积相等,则m的值为.