2022年初中数学浙教版七年级下册2.5三元一次方程组及其解法 能力阶梯训练——普通版

试卷更新日期:2022-01-24 类型:同步测试

一、单选题

  • 1. 方程组 {3x2y=5x+y+z=2z=2 的解是( )
    A、{x=1y=1z=2 B、{x=1y=1z=2 C、{x=1y=1z=2 D、{x=1y=1z=2
  • 2. 有铅笔、练习本、圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需31元;若购铅笔4支,练习本10本,圆珠笔1支共需42元.现购铅笔,练习本,圆珠笔各1个,共需(   )
    A、12元 B、10.5元 C、9.5元 D、9元
  • 3. 甲、乙、丙三种商品,若购买甲2件、乙4件、丙3件,共需220元钱,购甲3件、乙1件、丙2件共需235元钱,那么购甲、乙、丙三种商品各一件共需(    )
    A、85元 B、89元 C、90元 D、91元
  • 4. 若 2x+5y3z=23x+8z=3 ,则x+y+z的值等于(  )
    A、0 B、2 C、1 D、无法求出
  • 5. 某宾馆有单人间,双人间,三人间三种客房供游客选择居住,现某旅游团有20名旅客同时安排游客居住在该宾馆,若每个房间都住满,共租了9间客房,则居住方案(    )
    A、1种 B、2种 C、3种 D、4种

二、填空题

  • 6. 如图,在正方形 ABCD 的每个顶点上写一个数,然后把它的每条边的两个端点上的数加起来,将结果写在这条边上,若 AB 边上的数字是3, BC 边上的数字是7, CD 边上的数字是10,则 AD 边上的数字是.

  • 7. 解方程组 {x+y+z=12x+2yz=63xy+z=10 时,消去字母z , 得到含有未知数xy的二元一次方程组是
  • 8. 盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为元.
  • 9. 农历五月初五,中国传统节日端午节.某超市为了吸引顾客,在端午节当天推出由白粽、豆沙粽、蛋黄粽三种不同的粽子搭配而成的A、B两种礼盒,其中,A种礼盒含4个白粽、3个豆沙粽、3个蛋黄粽;B种礼盒含2个白粽、4个豆沙粽、4个蛋黄粽.每种礼盒的成本价分别为三种粽子的成本价之和(包装成本忽略不计),已知每盒A种礼盒的总成本为1个白粽成本的13倍,每盒A种礼盒的利润率为20%,每盒B种礼盒的利润率为25%,则当销售A、B两种礼盒的数量之比为7:26时,则该超市销售这两种礼盒的总利润率为.
  • 10. “端午节”是我国的传统佳节,民间历来有吃粽子的习俗.某超市准备了515个豆沙粽,525个火腿粽和若干个腊肉棕,将这些粽子分成了A,B,C三类礼品盒进行包装.A类礼品盒里有4个豆沙粽,4个火腿粽和6个腊肉粽;B类礼品盒里有3个豆沙粽,5个火腿粽和6个腊肉粽;C类礼品盒里有6个豆沙粽,4个火腿粽和4个腊肉粽.已知A,B,C三类礼品盒的数量都为正整数,并且A类礼品盒少于44盒,B类礼品盒少于49盒.如果所有礼品盒里的腊肉粽的总个数为m,则m=

三、计算题

  • 11. 解方程组: {x+2y3z=12x3y+4z=33x2y+z=7
  • 12. 对于一个三位数 n ,如果 n 满足:它的百位数字、十位数字之和与个位数字的差等于8,那么称这个数 n 为“快乐数”.例如: n1=9349+34=8934 是“快乐数”; n2=7017+01=6701 不是“快乐数”.
    (1)、判断844,735是否为“快乐数”?并说明理由;
    (2)、若将一个“快乐数” m 的个位数的3倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数 t (例如:若 m=642 ,则 t=664 ),若 t 也是一个“快乐数”,求满足条件的所有 m 的值.
  • 13. (阅读感悟)

    对于方程组的问题,有时候要求的结果不是每个未知数的值,而是求关于未知数的代数式的值.如已知实数 ab 满足 {3ab=52a+3b=7 ,求 a4b7a+5b 的值.

    方法一:解方程组,分别求出 ab 的值,代入代数式求值;

    方法二:仔细观察两个方程中未知数的系数之间的关系,通过适当变形整体求代数式的值.解法如下:

    ①-②,得: a4b=2 ;①+②×2,得: 7a+5b=19 .

    比较:方法一运算量较大,是常规思路;方法二运算较为简单,这种解题思路就是通常所说的“整体思想”.

    (问题解决)

    (1)、已知二元一次方程组 {3x+2y=72x+3y=5 ,则 xy= x+y= .
    (2)、某班级因组织活动购买奖品.买13支铅笔、4块橡皮、2本笔记本共需48元;买25支铅笔、7块橡皮、3本笔记本共需84元.则购买5只铅笔、5块橡皮、5本笔记本共需元.
    (3)、对于实数 xy ,定义新运算: xy=ax+byc ,其中 abc 是常数,等式右边是通常的加减法和乘法运算.已知 35=1547=28 ,那么 11 的值是.