黑龙江省齐齐哈尔市梅里斯达斡尔族区2021-2022学年七年级上学期期末考试数学试题
试卷更新日期:2022-01-17 类型:期末考试
一、单选题
-
1. 如果向东行驶80公里记作+80公里,那么向西行驶50公里记作( ).A、+50公里 B、+130公里 C、-50公里 D、-130公里2. A , B两点间的距离是指( )A、过A , B两点间的直线 B、连接A , B两点间的线段 C、直线AB的长 D、连接A , B两点间的线段的长度3. 在数轴上表示-3.5和2.1之间的整数有( ).A、4个 B、5个 C、6个 D、7个4. 某食品的保存温度是(-20±2)℃,以下温度不适合储存这种食品的是( ).A、-16℃ B、-18℃ C、-20℃ D、-22℃5. 用四舍五入法按要求对3.1415926分别取近似值,其中错误的是( )A、3.1(精确到0.1) B、3.141(精确到千分位) C、3.14(精确到百分位) D、3.1416(精确到0.0001)6. 钟表在8点30 分时,时钟上的时针与分针之间的夹角为( )A、60 B、70 C、75 D、857. 火星与地球最近距离约5500万公里,最远距离超过4亿公里,我国火星车“祝融号”于2021年5月15日成功实现登陆火星,彰显了中国人的探索精神和文化自信,标志着我国正一步一个脚印地向“航天强国”迈进.5500万公里用科学记数法表示为( )公里A、5.5× B、55× C、5500× D、0.55×8. 下图各图形中,不能经过折叠围成正方体的是( )A、 B、 C、 D、9. 互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为( )A、80元 B、90元 C、100元 D、110元10. 已知整数、满足下列条件:= , =- , 以此类推,则的值为( )A、-2018 B、-1010 C、-1009 D、-1008
二、填空题
-
11. 某工程队在修建高速公路时,有时需要将弯曲的道路改直以缩短路程,这样的理论依据是 .12. 一个角的补角比它的余角的3倍还多10°,则这个角的度数为 .13. 已知 , =4, , 则的值为 .14. 已知关于x、y的多项式(a+b)+(a-3)-2(b+2)+2ax+1不含项,则当x=-1时,这个多项式的值为 .15. 如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为 .16. 轮船沿江从甲港顺流航行到乙港,比原路从乙港返回甲港少用2小时,若轮船在静水中的航行速度为22千米/时,水流速度为2千米/时,则甲乙两港相距千米.17. 如图,是由白色小正方形和黑色小正方形组成的一组图形,以此规律,则第n个图形中白色小正方形与黑色小正方形的个数和用含n 的代数式表示为 .
三、解答题
-
18. 计算:19. 先化简,再求值: , 其中 .20. 解方程:(1)、(2)、=+221. 如图所示,线段AB=8cm ,点M在线段AB上,且AM:BM =1:3 ,P、Q分别是线段AM和AB的中点.(1)、AP= cm;(2)、求MQ的长.22. 现有一工程打算让甲、乙两个工程队完成,甲队单独完成这项工程需要60天,乙队单独完成这项工程需90天;若由甲队先做10天,剩下的工程由甲、乙两队合作完成.(1)、甲、乙两队合作多少天?(2)、甲队施工一天需付工程款4万元,乙队施工一天需付工程款2.5万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?23. 如图,在数轴上,点A表示数a ,点B表示数b,a、b满足+=0(1)、点A表示的数为 . 点B表示的数为 .(2)、数轴上有一个点C,且AC=3BC,则点C表示的数为 .(3)、M、N都是数轴上的点,点M从点A出发以每秒1个单位长度的速度向右运动,点N从 点B出发以每秒2个单位长度的速度向左运动,设点M、N同时出发,运动时间为x秒.
①点M、N出发几秒后相遇?
②点M、N出发几秒后相距4个单位长度?24. 综合与实践(问题情境)利用旋转三角尺开展数学活动,探究体会角在旋转过程中的变化.
(1)、(操作发现)如图①,将一个45°角的直角三角形三角板ABO的顶点O放在直线OD上的O处,斜边OA在直线OD上,延长BO至C.如图②,将图①中的三角板ABO绕着点O逆时针旋转90°后得到△O , 此时∠BO=°,OA平分∠ ;
(2)、(实践探究)如图③,将图②中的三角板绕点O逆时针继续旋转一定角度,使OD在∠内部,且∠DOC=45°,请探究:
①∠1与∠3之间的数量关系为 .
理由如下:(请利用图中的字母和数字完成证明过程)
因为∠DOC=45°,
所以∠2+∠3=45°.
又因为∠ ▲ +∠2=45°,
所以∠2+∠ ▲ =∠ ▲ +∠2.
所以 ▲ .
②∠1的补角有 ▲ 个,分别为 ▲ ,
③∠2的余角为 ▲ .