吉林省吉林市永吉县2021-2022学年八年级上学期期末数学试题
试卷更新日期:2022-01-10 类型:期末考试
一、单选题
-
1. 等腰三角形一边长为4,一边长9,它的周长是( )A、17 B、22 C、17或22 D、不确定2. 我们知道,一些较大的数适合用科学记数法表示,小于1的正数也可以用科学记数法表示.则0.000 025 7用科学记数法表示为( )A、 B、 C、 D、.3. 下列大学的校徽图案是轴对称图形的是( )A、 B、 C、 D、4. 下列运算正确的是( )A、 B、 C、 D、5. 下列约分正确的是( )A、 B、 C、 D、6. 如图,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.条件中任选一个,可使△ABC ≌△BAD.可选的条件个数为( )A、1 B、2 C、3. D、4
二、填空题
-
7. 正五边形每个内角的度数是.8. 因式分解:= .9. 若分式有意义,则字母x应满足的条件为 .10. 如图,在△ABC中,BC=8 cm,分别以点A和点B为圆心,大于的长为半径画弧,两弧相交于两点;过这两点作直线交AC于点E,交AB于点D,若△BCE的周长为18 cm,则AC的长为cm.11. 如图,在△ABC中,∠A=90°,∠B=40°.点D和点E分别在AC和BC的延长线上,并且CD=CE,连接DE.则∠D的度数为 .12. 若 , 其中b,c为常数,则点P(b,c)关于x轴的对称点的坐标为 .13. a,b是两个实数,若 , , 则的值为 .14. 如图,等边三角形ABC的边长为4 cm,点D,E分别在边AB,AC上,将△ABC沿DE折叠,使点A落在△ABC的外部F处.则整个阴影部分图形的周长为cm.
三、解答题
-
15. 计算: .16. 计算: .17. 斑马线前“车让人”,不仅体现着对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A-B-C横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,晓雯共用9秒通过AC,其中通过BC段的速度是通过AB段速度的2倍,求晓雯通过AB段时的速度.18. 如图,在△ABC中,AB=AC,点D在BC上,且BD=CD,DE⊥AB于E,DF⊥AC于F.
求证:△BDE ≌△CDF.
19. 先化简,再求值: , x在1,2,-3中选取合适的数.20. 如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)、图中有个三角形(包括△ABC),有对全等三角形.(2)、求证:BD=CE.21. 如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A,B两点均在格点上,在给定的网格中,按下列要求画图:( 1 )在图①中,画出以AB为底边的等腰△ABC,并且点C为格点.
( 2 )在图②中,画出以AB为腰的等腰△ABD,并且点D为格点.
( 3 )在图③中,画出以AB为腰的等腰△ABE,并且点E为格点,所画的△ABE与图②中所画的△ABD不全等.
22. 如图,△ABC是等边三角形,点E在AC边上,连接BE,以BE为一边作等边△BED,连接AD.(1)、求证:CE=AD.(2)、若BC=8 cm,BE=7 cm, 则△ADE的周长为cm.23. 如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)、求∠DAC的度数;(2)、求证:DC=AB.24. 阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:
因式分解:
=
=
=
(1)、利用分组分解法分解因式:①;
②
(2)、因式分解:=(直接写出结果).25. 某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)、求第一批购进书包的单价是多少元?(2)、若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?26. 如图,ED⊥AB,FC⊥AB,垂足分别为D,C,并且AC=BD,AE=BF,连接CE.(1)、求证:AE∥FB;(2)、若DC=DE,∠A=25°,求∠AEC的度数.(3)、若DC=DE,∠A=α,则∠AEC=(用含α的式子表示).(4)、若∠A=30°,DE=m,则BF=(用含m的式子表示).