2021-2022学年度第一学期八年级数学第11章《三角形》11.2与三角形有关的角 期末复习练习卷(人教版)

试卷更新日期:2022-01-04 类型:复习试卷

一、单选题

  • 1. 如图 ABCA'B'C' ,边 B'C' 过点A且平分∠BACBC于点D , ∠B=26°, CDB' =94°,则 C' 的度数为(    )

    A、34° B、40° C、45° D、60°
  • 2. 如图,点DAC上,点BAE上, ABC DBE . 若∠A:∠C=5:3,则∠DBC的度数为(    )

    A、12° B、24° C、20° D、36°
  • 3. 如图,在 ΔABC 中, AD 平分 BACBC 于点D, B=303 ,则 C 的度数是( )

    A、50 B、60 C、70 D、80
  • 4. 在探究证明“三角形的内角和是180°”时,综合实践小组的同学作了如下四种辅助线,其中不能证明“三角形内角和是180°”的是(    )
    A、 B、 C、 D、
  • 5. 如图,ADBE分别是△ABC的中线和角平分线,ABAC , ∠CAD=20°,则∠ABE的度数为( )

    A、20° B、35° C、40° D、70°
  • 6. 如图,D是△ABCBC边上一点,ABACBD , 则∠2=24°则∠1=(  )

    A、44° B、68° C、64° D、54°
  • 7. 如图所示,△ABC中,ACADBD , ∠DAC=80°,则∠B的度数为(    )

    A、40° B、35° C、25° D、20°
  • 8. 一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏东43°方向上,在海岛B的北偏东86°方向上.则海岛B到灯塔C的距离是(    )
    A、15海里 B、20海里 C、30海里 D、60海里
  • 9. 如图,在 ABC中,∠A=30°,则∠1+∠2的度数为(    )

    A、210° B、110° C、150° D、100°
  • 10. 如图,AB∥DE,∠BCE=53°,∠E=25°,则∠B的度数为(   )

    A、25° B、28° C、30° D、33°

二、填空题

  • 11. 如图,△ABC中,∠A=60°将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′DB=50°,那么∠A′ED的度数为

  • 12. 如图, ABC 中, AB=ACBAC=36° ,以点C为圆心, CB 长为半径画弧,交 AB 于点B和点D.若 BC=1 ,则 AD 的长度是

  • 13. 如图,△ABC是等边三角形,ADBC于点DAEAD , 则∠ADE的度数为

  • 14. 如图,点D为BC的延长线上一点,图中x的值为

  • 15. 如图, A=58°B=44°DFB=42° ,则 C = .

三、解答题

  • 16. 已知:如图,在 ΔABC 中, BAC=90°ADBC 于D, AE 平分 DACB=62° ,求 AEC 的度数.

  • 17. 如图,点D是△ABC的边BC上一点,ABACCD , ∠BAC=100°,求∠BAD的度数.

  • 18. 如图,在 ABC 中, BACBC=321ADBC 于点D , 若 BD=2 ,求 CD 的长.

  • 19. 如图,△ABC中,AD是高,AEBF是角平分线,它们相交于点O , ∠CAB=50°,∠BOA=120°,求∠DAE和∠C的度数.

  • 20. 如图,已知△ABC,∠C=∠B=∠EDF=50°,DE=DF,求证:BC=BE+CF.

  • 21. 上午8时,一条船从港口A出发,以15海里/时的速度向正北方向航行,10时到达海岛B处,从A,B两处望灯塔C,分别测得∠NAC=15°,∠NBC=30°.若该船从海岛B继续向正北航行,求船与灯塔C的最短距离.

  • 22. 如图,点DAB上,点EAC上,BECD相交于点O.已知∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数.