上海市黄浦区2021-2022学年七年级上学期期中数学试题
试卷更新日期:2021-11-24 类型:期中考试
一、单选题
-
1. 如果整式 是关于x的三次三项式,那么n等于A、3 B、4 C、5 D、62. 下列代数式中,① ;② ;③ ;④1;⑤ .是单项式的有( )A、1个 B、2个 C、3个 D、4个3. x与y的和的倒数,可以用代数式表示为( )A、 + B、 C、 +y D、x+4. 下列计算中,正确的是( )A、﹣2(a﹣1)=2﹣2a B、a+3a=4a2 C、(﹣2a)2=2a2 D、a•a2=a25. 下列各式从左到右的变形是因式分解的是( )A、ax+bx+c=(a+b)x+c B、(a+b)(a﹣b)=a2﹣b2 C、(a+b)2=a2+2ab+b2 D、a2﹣5a﹣6=(a﹣6)(a+1)6. 如图所示的图形面积为( )A、(x+1)2﹣12 B、(x+1)2﹣x2 C、x(x+1) D、(x+1)2﹣2x
二、填空题
-
7. 用代数式表示:比 的2倍小3的数是.8. 单项式﹣ 的系数是 .9. 将多项式xy2﹣2x2y+x3﹣1按字母x降幂排列,结果是 .10. 合并同类项:﹣3a2b3﹣ a2b3= .11. 计算:( a3b)•(﹣2bc2)= .12. 计算:(x﹣1)(5+x)= .13. 已知xm=2,xn=5,则x3m+n= .14. 多项式 恰好是另一个多项式的平方,则 .15. 分解因式:3a(x﹣y)+2b(y﹣x)= .16. 分解因式:﹣x2y+6xy﹣9y= .17. 如果代数式4y2﹣2y+5的值为7,那么代数式2y2﹣y+1的值等于 .18. 已知实数a和b适合a2b2+a2+b2+1=4ab , 则a+b= .19. 1002﹣992+982﹣972+962﹣952+…+22﹣12= .20. 如图所示,有一个形如四边形的点阵,共有n层,第1层每边有两个点,第2层每边有三个点,第3层每边有四个点,…,依此类推.试写出这个n层的四边形点阵的总点数是 . (用含n的代数式表示)
三、解答题
-
21. 计算: .22. 计算:( x3y)•(﹣3xy2)3•( x)2.23. 计算: .24. 计算: .25. 分解因式:(x﹣2y)(2x+3y)﹣2(2y﹣x)(5x﹣y).26. 分解因式:27. 先化简,再求值:(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2 , 其中x=﹣ .28. 一个多项式减去 x2﹣ xy﹣ 的差是﹣ x2+2xy﹣ ,求这个多项式.29. 已知m、n为常数,mx2+3xy﹣5x与2x2﹣2nxy+2y的差不含二次项,求m、n的值.30. 老王想靠着一面足够长的旧墙EF , 开垦一块长方形的菜地ABCD , 如图所示,菜地的一边靠墙,另外三边用竹篱笆围起来,并在平行于墙的一边BC上留1米宽装门,已知现有竹篱笆长共32米.(1)、设垂直于墙面的一边AB长为x米,则BC边的长用含x的代数式可表示为米.(2)、设菜地面积为S , 用含x的代数式来表示S .(3)、当x=8时,菜地面积为多少平方米?31. 有7张如图1规格相同的小长方形纸片,长为a , 宽为b(a>b),按如图2、3的方式不重叠无缝隙地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.(1)、如图2,点E、Q、P在同一直线上,点F、Q、G在同一直线上,右下角阴影部分矩形QPCG的面积为(用含a、b的代数式表示),左上角阴影部分矩形AFQE的面积为(用含a、b的代数式表示),矩形ABCD的面积为 . (用含a、b的代数式表示)(2)、如图3,点F、H、Q、G在同一直线上,设右下角与左上角的阴影部分的面积的差为S , PC=x .
①用a、b、x的代数式表示AE
②当BC的长度变化时,按照同样的放置方式,如果S的值始终保持不变,那么a、b必须满足什么条件?