河北省石家庄市辛集市2020-2021学年八年级上学期数学期末试卷

试卷更新日期:2021-09-30 类型:期末考试

一、单选题

  • 1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是(    )
    A、 B、 C、 D、
  • 2. 下列计算错误的是(    )

    A、1 不是三角形 ABC 的外角 B、ACD 是三角形 ABC 的外角 C、ACD>A+B D、B<1+2
  • 3. 若分式 x+3x2 的值为 0 ,则 x 的值为(   )
    A、x=3 B、x=2 C、x3 D、x2
  • 4. 下列说法正确的是(    )
    A、等腰三角形两边长为4,9,则三角形的周长为17或22 B、在三角形、四边形、五边形中只有三角形具有稳定性 C、n边形的外角和为180° D、四边形共有4条对角线
  • 5. 已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是(    )
    A、a> 32 B、a>-1 C、-1<a< 32 D、a< 32
  • 6. 下列因式分解结果正确的是(  )
    A、x2+3x+2=x(x+3)+2 B、4x2﹣9=(4x+3)(4x﹣3) C、a2﹣2a+1=(a+1)2 D、x2﹣5x+6=(x﹣2)(x﹣3)
  • 7. 下列各式从左到右的变形正确的是( )
    A、a2+1a=a+1 B、25a2b10ab2c2=52abc2 C、baba=aba+b D、m29m3=1m+3
  • 8. 下列说法:

    ①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7;

    ②两边和一角对应相等的两个三角形全等;

    ③如果两个三角形关于某直线成轴对称,那么它们是全等三角形;

    ④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.

    其中正确的有(  )

    A、1个 B、2个 C、3 D、4个
  • 9. 如图1,在长为 2b ,宽为b的长方形中去掉两个边长为a的小正方形得到图2.然后将图2中的阴影部分剪下,并将剪下的阴影部分从中间剪开,得到两个形状,大小完全相同的小长方形,将这两个小长方形与剩下的图形拼成如图3中的长方形,上述操作能够验证的等式是(    )

    A、(a+2b)2=a2+4ab+4b2 B、(ba)(2b+2a)=2b22a2 C、(2ba)2=4b24ab+a2 D、a(2ba)=2aba2
  • 10. 如图(1),已知 AB=ACDBAC 的角平分线上一点,连接 BDCD ;如图(2),已知 AB=AC ,D,E为 BAC 的角平分线上两点,连接 BDCDBECE ;如图(3),已知 AB=AC ,D,E,F为 BAC 的角平分线上三点,连接 BDCDBECEBFCF ;……,依此规律,第6个图形中有全等三角形的对数是(   )

    A、21 B、11 C、6 D、42
  • 11. 关于x的方程 x+1x=a+1a 的两个解为 x1=ax2=1ax+2x=a+2a 的两个解为 x1=ax2=2ax+3x=a+3a 的两个解为 x1=ax2=3a ,则关于x的方程 x+10x1=a+10a1 的两个解为(    )
    A、x1=ax2=2a B、x1=ax2=a+8a1 C、x1=ax2=10a1 D、x1=ax2=a+9a1

二、填空题

  • 12. 已知 32m=532n=10 ,则 9mn 的值是
  • 13. 如图.在 ABC 中, AB=AC=2B=C=40° ,点D在线段 BC 上运动(点D不与点B、C重合),连接 AD ,作 ADE=40°DE 交线段 AC 于点E.

    (1)、点D从B向C的运动过程中, BDA 逐渐变(填“大”或“小”);
    (2)、在点D的运动过程中, ADE 的形状可以是等腰三角形吗?若可以,请直接写出 BDA 的度数,若不可以,请说明理由.

三、解答题

  • 14. 如图,在 ABC 中, BAC=30°ACB=45°BD//ACBD=AB ,且CD两点位于 AB 所在直线两侧,射线 AD 上的点E满足 ABE=60°

    (1)、AEB= °;
    (2)、图中与 AC 相等的线段是 BE ,证明此结论只需证明
  • 15. 计算:
    (1)、[x(x2y2xy)y(x2x3y)]÷3x2y
    (2)、a2b2(a2b2)÷(a4)2
  • 16.
    (1)、解方程: 1x+1+2x1=4x21
    (2)、先化简,再求值: (13x+2)÷x22x+1x24 ,其中 x=5
  • 17. 如图,在 ΔABC 中, AB=AC ,D是 BC 边上的中点,连接 ADBE 平分 ABCAC 于点E,过点E作 EF//BCAB 于点F.

    (1)、若 BAD=42° ,求 C 的度数;
    (2)、求证: FB=FE .
  • 18. 观察下列等式:

    212122=99×(2212)

    312132=99×(3212)

    522252=99×(5222)

    742472=99×(7242)

    (1)、根据上述各式反映的规律填空,使下列式子满足以上规律:

    632362=99×

    22 =99×(8232)

    (2)、设这类等式左边第一个两位数的十位数字为a,个位数字为b,a、b均为大于0而小于等于9的整数,且 a>b ,请用a、b写出表示一般规律的式子,并证明所得式子.
  • 19. 一辆汽车开往距离出发地 180km 的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后按原来速度的1.5倍匀速行驶,结果比原计划提前 40min 到达目的地.
    (1)、求前1小时这辆汽车行驶的速度;
    (2)、汽车出发时油箱有油7.5升油,到达目的地时还剩4.3升油,若汽车提速后每小时耗油量比原来速度每小时耗油量多0.3升,问这辆汽车要回到出发地,是以原来速度省油还是以提速后的速度省油?
  • 20. 在 ΔABC 中, AB=AC ,点D是直线 BC 上一点(不与B,C重合),以 AD 为一边在 AD 的右侧作 ΔADE ,使 AD=AEDAE=BAC ,连接 CE
    (1)、如图1,当点D在线段 BC 上,如果 BAC=90° ,则 BCE=度;

    (2)、如图2,如果 BAC=60° ,求 BCE 的度数是多少?

    (3)、设 BAC=αBCE=β

    ①如图3,当点D在线段 BC 上移动,则 αβ 之间有怎样的数量关系?请说明理由;

    ②当点D在直线 BC 上移动,请直接写出 αβ 之样的数量关系,不用证明.