河北省承德市平泉市2020-2021学年八年级上学期数学期末试卷

试卷更新日期:2021-09-30 类型:期末考试

一、单选题

  • 1. 下列图形中一定是轴对称图形的是(    )
    A、三角形 B、等腰三角形 C、梯形 D、平行四边形
  • 2. 下列各组线段,不能组成三角形的是(    )
    A、2cm,3cm,5cm B、5cm,6cm,10cm C、1cm,3cm,3cm D、3cm,4cm,5cm
  • 3. 小数0.0…0314用科学记数法表示为3.14× 108 ,则原数中小数点后“0”的个数为( )
    A、5 B、6 C、7 D、8
  • 4. 下列图形具有稳定性的是(    )
    A、 B、 C、 D、
  • 5. 将 10.52 变形正确的是(    )
    A、10.52=102+0.52 B、10.52=(10+0.5)(100.5) C、10.52=102+2×10×0.5+0.52 D、10.52=102+10×0.5+0.52
  • 6. 下列计算,正确的是(    )
    A、(x+3)(x3) =x23 B、(x2+1)2=x4+x2+1 C、(x2+2)x=x3+2x D、(ab)2=a22abb2
  • 7. 如果分式 x24x2 有意义,那么x值可能是(    )
    A、x =±2 B、x = 2 C、x = -2 D、不存在
  • 8. 如图, ABC EFD , 则BCDF的关系是(    )

    A、平行但不相等 B、相等但不平行 C、不平行也不相等 D、平行且相等
  • 9. 如图,正方形网格中, ABC的顶点ABC都在格点上,对于点PQMN分别与点BC为顶点构成三角形,面积与 ABC不相等的是( )

    A、P B、Q C、M D、N
  • 10. 将分式 xxy 中的xy的值同时扩大2倍,则分式的值(    )
    A、扩大2倍 B、缩小到原来的 12 C、保持不变 D、无法确定
  • 11. 下列等式成立的是(    )
    A、1x+1y=1x+y B、y2x(xy)2=x C、22x+y=1x+y D、xx+y=xx+y
  • 12. 如图,已知线段AB , 依下列步骤用一把三角尺作图,下列叙述错误的是(    )

    A、ACD=BCD B、ADC=2B C、AD=BD D、CDAB
  • 13. 如图,把三个长为2,宽为1的长方形拼接,则图中面积为1的三角形个数为( )

    A、4 B、5 C、6 D、7
  • 14. 规定一种运算: xy=xy2y ,则 a(a2)+aa2 的计算结果是(    )
    A、2a3 B、4a2 C、2a34a2 D、0
  • 15. 尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ过直线上一点作这条直线的垂线;Ⅳ.作角的平分线,则正确的配对是(    )

    A、①-Ⅳ,②-Ⅱ,③-Ⅲ,④ -Ⅰ B、①-Ⅳ,②-Ⅲ,③-Ⅱ,④-Ⅰ C、①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D、①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ
  • 16. 如图,若x为正整数,则表示 (x3)2x26x+91x+1 的值的点落在(    )

    A、段① B、段② C、段③ D、段④

二、填空题

  • 17. 若 a=3b0 ,则 a2b2a2ab 的值为
  • 18. 如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例: 即4+3=7,则(1)用含x的式子表示m;(2)当y=2时,n的值为

  • 19. 如图,在三角形纸片中,AB=10cmBC=8cmAC=6cm , 沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD

    (1)、BE的长为
    (2)、 AED的周长为

三、解答题

  • 20. 已知:整式 A=(x1)2 ,整式 B=4x ,整式 C=x+72
    (1)、求A+B的值;
    (2)、分解因式:A+B
    (3)、若 1B=1C ,求x的值
  • 21. 观察:下列算式:

    ①1×3-22=3-4=-1;

    ②2×4-32=8-9=-1;

    ③3×5-42=15-16=-1

    (1)、尝试:
    请你按照三个算式的规律写出第④个、第⑤个算式;
    (2)、发现:
    请你把这个规律用含字母的式子表示出来,并说明其正确性;
    (3)、应用:
    计算2018×2020-20192=
  • 22. 阅读下面的学习材料:我们知道,一般情况下式子“ 2×3mn ”与“ 2m+3n ”是不相等的(mn均为整数且均不为0),但当mn取某些特定整数时,可以使这两个式子相等,我们把使“ 2×3mn=2m+3n ”成立的数对“mn”叫做“好数对”,记作[mn],例如,当m=-2,n=6时,有 2×3mn=2m+3n 成立,则数对“-2,6”就是一对“好数对”,记作[-2,6],解答下列问题:
    (1)、通过计算,判断数对“2,3”是否是“好数对”;
    (2)、求“好数对”[x , -3]中x的值;
    (3)、请再写出一对上述未出现的“好数对”:[]
  • 23. 已知n边形的内角和θ=(n-2)×180°
    (1)、甲同学说,θ能取540°;而乙同学说,θ也能取450°,甲、乙的说法对吗?若对,求出边数n , 若不对,说明理由;
    (2)、若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x
  • 24. 如图,在平面直角坐标系中有一 ABC和一条直线m(直线m上各点的横坐标都为1)

    (1)、作出 ABC关于直线m的对称图形;
    (2)、分别写出点ABC的对应点的坐标;
    (3)、在 ABC的边上有任意一点M(xy),则点M的对应点的坐标是什么?
  • 25. 如图,AB=ACAD=AE , ∠BAC=∠DAE=40°,BDCE相交于点F

    (1)、求证: ABDACE
    (2)、若AB=AD , ∠CAD=60°

    ①求∠ACE的度数;

    ②判断AEBF的位置关系,并说明理由

  • 26. 如图,在 ABC ADE中,ABAD=8, BCDE , ∠B=∠D=30°,边AD与边BC交于点P(不与点BC重合),点BEAD异侧,I APC内角∠PAC与∠PCA平分线的交点

    (1)、求证:∠ACB=∠AED
    (2)、设APx , 请用含x的式子表示PD , 并求PD的最大值;
    (3)、当∠BAC=100°时,∠AIC的取值范围是m°<∠AIC<n°,分别直接写出mn的值