江苏中考数学历年真题分类卷5 一次方程和一次不等式
试卷更新日期:2021-09-27 类型:二轮复习
一、单选题
-
1. 《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,可列方程组为( )A、 B、 C、 D、2. 若关于x的不等式组 恰有3个整数解,则实数a的取值范围是( )A、 B、 C、 D、3. 方程组 的解是( )A、 B、 C、 D、4. 《九章算术》是古代中国第一部自成体系的数学专著,其中《卷第八方程》记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的 ,则甲有50钱,乙若得到甲所有钱的 ,则乙也有50钱.问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x、y的二元一次方程组是( )A、 B、 C、 D、5. 某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机 架,乙种型号无人机 架.根据题意可列出的方程组是( )A、 B、 C、 D、6. 若a>b,则下列等式一定成立的是( )A、a>b+2 B、a+1>b+1 C、﹣a>﹣b D、|a|>|b|7. 把 这 个数填入 方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图 ),是世界上最早的“幻方”.图 是仅可以看到部分数值的“九宫格”,则其中 的值为( )A、1 B、3 C、4 D、68. 若 , ,则 的值等于( )A、5 B、1 C、-1 D、-59. 不等式 的解集在数轴上表示正确的是( )A、 B、 C、 D、10. 不等式组 的解集在数轴上表示为( ).A、 B、 C、 D、11. 如果 ,那么下列不等式正确的是( )A、 B、 C、 D、12. 已知a、b满足方程组 ,则a+b的值为( )A、2 B、4 C、—2 D、—413. 下列各数轴上表示的 的取值范围可以是不等式组 的解集的是( )A、 B、 C、 D、14. 不等式 的非负整数解有( )A、1个 B、2个 C、3个 D、4个15. 实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是( )A、 B、 C、 D、16. 某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为( )A、10 B、9 C、8 D、7
二、填空题
-
17. 扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马天追上慢马.18. 不等式组 的解集是.19. 我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子最井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是尺.20. 已知x、y满足方程组 ,则 的值为.21. 不等式组 的解集为 .22. 若 ,是关于 、 的二元一次方程 的解,则 .23. 《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有 个人共同出钱买鸡,根据题意,可列一元一次方程为.24. 不等式组 的解集是.25. 下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.
三、计算题
-
26. 解方程组和不等式组:(1)、(2)、27. 解不等式组:28.(1)、计算: ﹣(π﹣1)0﹣sin30°;(2)、解不等式组: .29. 解方程组: .30.(1)、计算:(2)、解不等式组:31. 解不等式组: .32. 解不等式组 ,并写出它的最大负整数解.33. 解方程组 .34. 解不等式组:35. 解不等式组: .36. 解不等式组 ,并写出它的所有负整数解
四、解答题
-
37. 甲、乙两工程队共同修建150km的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?38. 《九章算术》被历代数学家尊为“算经之首”.下面是其卷中记载的关于“盈不足”的一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?这段话的意思是:今有人合伙买金,每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱.合伙人数、金价各是多少?请解决上述问题.39. 解不等式组 ,并写出满足不等式组的所有整数解.40. 解不等式 ,并在数轴上表示解集.41. 已知方程组 的解也是关于x、y的方程 的一个解,求a的值.42. 本地某快递公司规定:寄件不超过 千克的部分按起步价计费;寄件超过 千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:
收费标准
目的地
起步价(元)
超过 千克的部分
(元 千克)
上海
北京
实际收费
目的地
质量
费用(元)
上海
2
9
北京
3
22
求 , 的值.
43. 某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?44. 某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)
所用汽车数量(辆)
运输物资总量(吨)
第一批
2
5
130
第二批
4
3
218
试问每节火车车皮和每辆汽车平均各装物资多少吨?
45. 解不等式组 并把解集在数轴上表示出来.46. 解不等式 -x>1,并把它的解集在数轴上表示出来.五、综合题
-
47. 为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)、这两种消毒液的单价各是多少元?(2)、学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的 ,请设计出最省钱的购买方案,并求出最少费用.48. 阅读感悟:
有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数x、y满足 ①, ②,求 和 的值.
本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① ②可得 ,由① ② 可得 .这样的解题思想就是通常所说的“整体思想”.
解决问题:
(1)、已知二元一次方程组 ,则 , ;(2)、某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)、对于实数x、y,定义新运算: ,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知 , ,那么 .49. 如图,“开心”农场准备用 的护栏围成一块靠墙的矩形花园,设矩形花园的长为 ,宽为 .(1)、当 时,求b的值;(2)、受场地条件的限制,a的取值范围为 ,求b的取值范围.50. 解不等式 .解:去分母,得 .
……
(1)、请完成上述解不等式的余下步骤:(2)、解题回顾:本题“去分母”这一步的变形依据是 (填“A”或“B”)A、不等式两边都乘(或除以)同一个正数,不等号的方向不变; B、不等式两边都乘(或除以)同一个负数,不等号的方向改变.