北师版数学九年级上册《第六章 反比例函数》单元检测B卷
试卷更新日期:2021-09-25 类型:单元试卷
一、单选题
-
1. 如图,已知直线y=k1x(k1≠0)与反比例函数y= (k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是( )A、(﹣1,﹣2) B、(﹣1,2) C、(1,﹣2) D、(﹣2,﹣1)2. 如图,反比例函数 的图象经过点 ,过A作 轴于点B,连 ,直线 ,交x轴于点C,交y轴于点D,若点B关于直线 的对称点 恰好落在该反比例函数图象上,则D点纵坐标为( )A、 B、 C、 D、3. 若点 在反比例函数 的图像上,则 的大小关系为( )A、 B、 C、 D、4. 如图,平行四边形 的顶点A在x轴的正半轴上,点 在对角线 上,反比例函数 的图像经过C、D两点.已知平行四边形 的面积是 ,则点B的坐标为( )A、 B、 C、 D、5. 已知点 在反比例函数 的图象上.若 ,则( )A、 B、 C、 D、6. 如图.在平面直角坐标系中,△AOB的面积为 ,BA垂直x轴于点A,OB与双曲线y= 相交于点C,且BC∶OC=1∶2,则k的值为( )A、﹣3 B、﹣ C、3 D、7. 如图, 交双曲线 于点A , 且 ,若矩形 的面积是8,且 轴,则k的值是( )A、18 B、50 C、12 D、8. 如图,O是坐标原点,点B在x轴上,在 OAB中,AO=AB=5,OB=6,点A在反比例函数y= (k≠0)图象上,则k的值( )A、﹣12 B、﹣15 C、﹣20 D、﹣309. 已知:如图,直线 与双曲线 在第一象限交于点 ,与x轴、y轴分别交于A,B两点,则下列结论错误的是( )A、 B、 是等腰直角三角形 C、 D、当 时,10. 如图,点A在曲线到 上,点B在双曲线 上, 轴,点C是x轴上一点,连接 、 ,若 的面积是6,则k的值( )A、-6 B、-8 C、-10 D、-1211. 在平面直角坐标系xOy中,矩形OABC的点A在函数 的图象上,点C在函数 的图象上,若点B的横坐标为 ,则点A的坐标为( )A、 B、 C、 D、12. 如图,点P是函数 的图像上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数 的图像于点C、D,连接 、 、 、 ,其中 ,下列结论:① ;② ;③ ,其中正确的是( )A、①② B、①③ C、②③ D、①
二、填空题
-
13. 若反比例函数 的图象过点 ,则k的值等于.14. 如图,点 分别在函数 的图象上,点 在 轴上.若四边形 为正方形,点 在第一象限,则 的坐标是.15. 如图,若反比例函数 的图象经过等边三角形POQ的顶点P,则△POQ的边长为.16. 如图, 、 两点在反比例函数 ( )的图象上, 的延长线交 轴于点 ,且 ,则 的面积是.17. 如图,平行于y轴的直线与函数y1 (x>0)和y2 (x>0)的图象分别交于A、B两点,OA交双曲线y2 于点C,连接CD,若 OCD的面积为2,则k=.18. 如图,矩形 的顶点 在反比例函数 的图象上,矩形 的面积为3,则 ;
三、解答题
-
19. 如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y= (k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.(1)、根据图象直接写出y1、y2的大小关系,并通过计算加以验证;(2)、结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k的值.你选择的条件是 ▲ (只填序号).20. 如图,已知直线y=kx+b(k≠0)与双曲线y= 相较于A(m,3)、B(3,n)两点.(1)、求直线AB的解析式;(2)、连结AO并延长交双曲线于点C,连结BC交x轴于点D,连结AD,求△ABD的面积.21. 如图,一次函数y=x+2的图象与反比例函数 的图象相交,其中一个交点的横坐标是1.(1)、求k的值;(2)、若将一次函数y=x+2的图象向下平移4个单位长度,平移后所得到的图象与反比例函数 的图象相交于A,B两点,求此时线段AB的长.22. 如图,一次函数y=ax+b的图象与反比例函数 的图象交于点A、B,与x轴交于点 ,若OC=AC,且 =10(1)、求反比例函数与一次函数的表达式;(2)、请直接写出不等式ax+b> 的解集.23. 小欣在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质.其研究过程如下:(1)、绘制函数图象
①列表:下表是 与 的几组对应值,其中 ▲ ;
…
-4
-3
-2
0
1
2
…
…
-1
=2
-3
3
2
…
②描点:根据表中的数值描点 ,请补充描出点 ;
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)、探究函数性质判断下列说法是否正确。
①函数值 随 的增大而减小:
②函数图象关于原点对称:
③函数图象与直线 没有交点.