广东省韶关市新丰县2020-2021学年七年级上学期数学期末试卷

试卷更新日期:2021-09-15 类型:期末考试

一、单选题

  • 1. -4的倒数是(    )
    A、-4 B、4 C、14 D、14
  • 2. 《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则 8 表示气温为(    )
    A、零上8℃ B、零下8℃ C、零上2℃ D、零下2℃
  • 3. 用四舍五入法将0.00519精确到千分位的近似数是(    )
    A、0.052 B、0.051 C、0.005 D、0.00519
  • 4. 已知月球与地球之间的平均距离约为 384000km ,把 384000km 用科学记数法可以表示为(   )
    A、38.4×104km B、3.84×105km C、0.384×106km D、3.84×106km
  • 5. “植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是(   )
    A、两点确定一条直线 B、两点之间,线段最短 C、直线可以向两边延长 D、两点之间线段的长度,叫做这两点之间的距离
  • 6. 若代数式3x﹣9的值与﹣3互为相反数,则x的值为(   )
    A、2 B、4 C、﹣2 D、﹣4
  • 7. 如图,在正方体的展开图中,与汉字“抗”相对的面上的汉字是(  )

    A、 B、 C、 D、
  • 8. 下列方程的变形正确的有(   )
    A、3x6=0 ,变形为 3x=6 B、x+5=33x ,变形为 4x=2 C、23x1=2 ,变形为 2x3=2 D、2x=1 ,变形为 x=2
  • 9. 下列计算正确的是(    )
    A、3a+a=3a2 B、2a+3b=5ab C、3aa=3 D、3ab+2ab=ab
  • 10. 有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:① |a|>3 ;② ab>0 ;③ b+c<0 ;④ ba>0 .上述结论中,所有正确结论的序号是(    )

    A、①② B、②③ C、②④ D、③④

二、填空题

三、解答题

  • 18. 计算: 10+8÷(2)2+4×(3)
  • 19. 根据下列语句,画出图形.

    如图,已知四点 ABCD

    ①画直线 AB

    ②连接线段 ACBD ,相交于点 O

    ③画射线 AD ,BC,交于点 P

  • 20. 如图,已知 COB=2BOD ,OA平分 COD ,且 BOD=42° ,求 AOB 的度数.

  • 21. 某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间,这个学校的住宿生有多少人?
  • 22. 先化简,再求值:2( x2+3xy)(x2xy) ,其中 x=2,y=3 .
  • 23. 本学期学习了一元一次方程的解法,下面是林林同学的解题过程:

    解方程: 2x+13x+26=1

    解:方程两边同时乘6,得 2x+13×6x+26×6=1×6   …………第①步

    去分母,得 2(2x+1)x+2=6   …………第②步

    去括号,得 4x+2x+2=6   …………第③步

    移项,得 4xx=622   …………第④步

    合并同类项,得 3x=2   …………第⑤步

    系数化为1,得 x=23   …………第⑥步

    (1)、上述林林的解题过程从第步开始出现错误.
    (2)、请你帮林林改正错误,写出完整的解题过程.
  • 24. 某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.
    (1)、若该校到同一家超市选购所有商品,则到A超市要准备元货款,到B超市要准备元货款(用含a的式子表示);
    (2)、在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?
    (3)、假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?
  • 25. 如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

    (1)、数轴上点B表示的数;点P表示的数(用含t的代数式表示)
    (2)、若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是
    (3)、动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?
    (4)、动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?