江苏省扬州市江都区八校2020-2021学年七年级上学期数学期中联考试卷

试卷更新日期:2021-09-10 类型:期中考试

一、单选题

  • 1. ﹣3的相反数为(   )
    A、﹣3 B、13 C、13 D、3
  • 2. 下列一组数:﹣2.5,0,﹣3 12π20.6. ,0.080080008,1.121121112…其中无理数有(  )
    A、0个 B、1个 C、2个 D、3个
  • 3. 下列各式计算正确的是(   )
    A、2a+5b=3ab B、6a+a=6a2 C、4m2n2mn2=2mn D、3ab25b2a=2ab2
  • 4. 已知|x|=3,|y|=2,且xy﹤0,则x+y的值等于(   )
    A、5或-5 B、1或-1 C、5或1 D、-5或-1
  • 5. 已知 mn=23 ,则7﹣3m+3n的值为(  )
    A、9 B、5 C、723 D、613
  • 6. 已知 1(3m5)2 有最大值,则方程 5m4=3x+2 的解是 ( )
    A、79 B、97 C、- 79 D、- 97
  • 7.

    有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是(  )

    ①b<0<a; ②|b|<|a|; ③ab>0; ④a﹣b>a+b.

    A、①② B、①④ C、②③ D、③④
  • 8. 当n≥2时,设1+2+3+…+n的末位数字为an , 比如1+2=3,末位数字为3,故a2=3,又如1+2+3+4=10,末位数字为0,故a4=0,则a2+a3+…+a888的末位数字为(   )
    A、0 B、5 C、6 D、9

二、填空题

  • 9. 如果高出海平面20米,记作+20米,那么-30米表示.
  • 10. 据统计,全球每分钟约有8500000000千克污水排入江河湖海,则8500000000用科学记数法表示为.
  • 11. 单项式- 103πax23 次数是.
  • 12. 若代数式 3a5bm+12anb2 是同类项,那么m+n=
  • 13. 若方程 (a3)x|a|27=0 是关于x的一元一次方程,则a等于
  • 14. 某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为.
  • 15. 按照如图所示的计算程序,若 x=2 ,则输出的结果是.

  • 16. 对于任意的有理数a,b,定义新运算: ab=2ab+1(3)4=2×(3)×4+1=23 .计算: 3(5)=
  • 17. 若关于a,b的多项式3(a2+2ab﹣b2)﹣(a2+mab+2b2)中不含ab项,则m=.
  • 18. 已知(2x2-x-1)3=a0x6+a1x5+a2x4+a3x3+a4x2+a5x+a6 , 求a0+a2+a4=

三、解答题

  • 19. 计算:
    (1)、3+(11)(9)
    (2)、(7)×5(36)÷4
    (3)、(116+34)×(24)
    (4)、14+14×[2×(6)(4)2]
  • 20. 解方程:
    (1)、2x+4=10 
    (2)、5x4=12x3
  • 21. 化简
    (1)、-3xy-2y2+5xy-4y2
    (2)、2(5a2-2a)-4(-3a+2a2
  • 22. 若(a﹣1)2+|b+2|=0,先化简:5(a2b﹣3ab2)﹣2(a2b﹣7ab2),再求值.
  • 23. 已知方程2-3(x+1)=0的解与关于x的方程 k+x2 -3k-2=2x的解互为倒数,求k的值.
  • 24. 某位同学做一道题:已知两个多项式A,B,求A-B的值.他误将A-B看成A+B,求得结果为3x2-3x+5,已知B= x2-x-1.
    (1)、求多项式A;
    (2)、求A-B的正确答案.
  • 25. 有理数xy在数轴上对应点如图所示:

    (1)、在数轴上表示﹣x , |y|;
    (2)、试把xy , 0,﹣x , |y|这五个数从小到大用“<”号连接,
    (3)、化简:|x+y|﹣|yx|+|y|.
  • 26. 甲.乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).
    (1)、用代数式表示(所填式子需化简):当购买乒乓球的盒数为 x 盒时,在甲店购买需付款元;在乙店购买需付款元.
    (2)、当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.
    (3)、当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?
  • 27. 一般情况下 a2+b3=a+b2+3 不成立,但有些数可以使得它成立,例如: a=b=0 .我们称使得 a2+b3=a+b2+3 成立的一对数 ab 为“相伴数对”,记为 (ab)
    (1)、若 (1b) 是“相伴数对”,求b的值;
    (2)、写出一个“相伴数对” (ab) ,并说明理由.(其中 a0 ,且 a1
    (3)、若 (mn) 是“相伴数对”,求代数式 m223n[4m2(3n1)] 的值.
  • 28. 已知数轴上三点A,O,B对应的数分别为﹣5,0,1,点M为数轴上任意一点,其对应的数为x.请回答问题:

    (1)、A、B两点间的距离是 , 若点M到点A、点B的距离相等,那么x的值是
    (2)、有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动了2017次时,求点P所对应的有理数.
    (3)、当x为何值时,点M到点A、点B的距离之和是8;
    (4)、如果点M以每秒3个单位长度的速度从点O向左运动时,点A和点B分别以每秒1个单位长度和每秒4个单位长度的速度也向左运动,且三点同时出发,那么几秒种后点M运动到点A、点B之间,且点M到点A、点B的距离相等?