山西省太原市2020-2021学年高一下学期数学期末考试试卷
试卷更新日期:2021-08-24 类型:期末考试
一、单选题
-
1. 抛掷两枚质地均匀的硬币,设 “第一枚正面朝上”, “第二枚反面朝上”,则事件 与事件 ( )A、相互独立 B、互为对立事件 C、互斥 D、相等2. 将一个容量为 的样本分成2组,已知第一组频数为8,第二组的频率为0.80,则 为( )A、20 B、40 C、60 D、803. 某人将一枚质地均匀的硬币连续抛掷了10次,正面朝上的情形出现了7次,则下列说法正确的是( )A、正面朝上的概率为0.7 B、正面朝上的频率为0.7 C、正面朝上的概率为7 D、正面朝上的概率接近于0.74. 在三棱锥 中, 平面 ,垂足为 ,且 ,则点 一定是 的( )A、内心 B、外心 C、重心 D、垂心5. 某学校为了调在学生的学习情况,从每班随机抽取5名学生进行调查.若一班有45名学生,将每一学生从01到45编号,请利用下面的随机数表选取5个编号,选取方法是从随机数表的第2行的第7、8列开始由左向右依次选取两个数字(作为编号),如果选取的两个数字不在总体内,则将它去掉,直到取足样本,则第四个编号为( )
附随机数表(下表为随机数表的前3行):
03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 95
97 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 73
16 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 10
A、32 B、37 C、42 D、276. 我国古代数学名著《九章算术》中有“堑堵”一说“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.如图所示的“堑堵” 中, , , 分别为棱 , 的中点,则直线 与 的位置关系为( )A、平行 B、相交 C、异面 D、无法判断7. 已知一组数据为1,2,4,5,6,7,8,8,9,9,则第40百分位数是( )A、4 B、4.5 C、5 D、5.58. 如图,在长方体 中, . .则直线 与平面 的距离为( )A、 B、 C、 D、9. 现采用随机模拟的方法估计某篮球运动员投篮3次至少投中2次的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有投中,2,3,4,5,6,7,8,9表示投中;因为投篮3次,故以每3个随机数为一组.代表投篮3次的结果.经随机模拟产生了如下20组随机数:据此估计,该篮球运动员投篮3次至少投中2次的概率为( )
A、0.75 B、0.8 C、0.85 D、0.910. 在正四面体 的棱中任取两条棱,则这两条棱所在直线成 角的概率是( )A、 B、 C、 D、11. 已知一组数据的频率分布直方图如图所示,则估计该组数据的平均数为( )A、64 B、65 C、66 D、6712. 对于两个不同的平面 , 和三条不同的直线 , , .有以下几个命题:①若 , ,则 ;
②若 , ,则 ;
③若 , ,则 ;
④若 , ,则 ;
⑤若 , ,则 .
则其中所有错误的命题是( )
A、③④⑤ B、②④⑤ C、②③④ D、②③④⑤二、填空题
-
13. 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 .14. 甲、乙两名同学同时做某道压轴选择题,两人做对此题的概率分别为 和 ,假设两人是否能做对此题相互独立.则至少有一人能做对该题的概率为.15. 正四面体相邻两个面所成二面角的余弦值为.16. 从1,2,3,4四个数字中,随机地选取两个数字,若数字的选取是不放回的,则两个数字的和为偶数的概率为;若数字的选取是有放回的,则两个数字的和为偶数的概率为.
三、解答题
-
17. 从甲、乙两人中选选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:
甲
乙
(1)、分别计算甲、乙两人射击命中环数的平均数:(2)、经计算可得甲、乙两人射击命中环数的标准差分别为1.73和1.10,从计算结果看,选派谁去参赛更好?请说明理由.18. 如图,正三棱柱 的所有棱长均相等.(1)、在图中作出过 与侧面 垂直的三棱柱的截面,并说明理由;(2)、求直线 与侧面 所成角的余弦值.19. 从某校高一年级学生中随机抽取了50名学生,将他们的数学检测成绩(满分100分,成绩均为不低于40分的整数)按 , ,…, 分成六组,得到如图所示的频率分布直方图.(1)、若该校高一年级共有学生600名,估计该校高一年级数学检测成绩不低于80分的人数;(2)、估计高一年级数学成绩的80%分位数.20. 投掷一颗质地均匀的骰子2次,观察出现的点数,并记第一次出现的点数为 ,第二次出现的点数为 .(1)、写出试验的样本空间;(2)、求满足 的概率.