陕西省初中数学历年真题汇编4 基本图形性质

试卷更新日期:2021-08-11 类型:二轮复习

一、单选题

  • 1. 如图,在菱形 ABCD 中, ABC=60° ,连接 ACBD ,则 ACBD 的值为(   )

    A、12 B、22 C、32 D、33
  • 2. 如图,点D、E分别在线段 BCAC 上,连接 ADBE .若 A=35°B=25°C=50° ,则 1 的大小为(   )

    A、60° B、70° C、75° D、85°
  • 3. 如图, ABBCCDDE 是四根长度均为5cm的火柴棒,点A、C、E共线.若 AC=6cmCDBC ,则线段 CE 的长度为(   )

    A、6 cm B、7 cm C、62cm D、8cm
  • 4. 若∠A=23°,则∠A余角的大小是(   )
    A、57° B、67° C、77° D、157°
  • 5. 如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为(   )

    A、52 B、32 C、3 D、2
  • 6. 如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为(   )

    A、101313 B、91313 C、81313 D、71313
  • 7. 如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为( )

    A、1 B、32 C、2 D、4
  • 8. 如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为( )

    A、52° B、54° C、64° D、69°
  • 9. 如图,是一个几何体的表面展开图,则该几何体是(   )

    A、正方体 B、长方体 C、三棱柱 D、四棱锥
  • 10. 如图,若l1l2 , l3∥l4 , 则图中与∠1互补的角有(   )

    A、1个 B、2个 C、3个 D、4个
  • 11. 如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是(   )

    A、AB= 2 EF B、AB=2EF C、AB= 3 EF D、AB= 5 EF
  • 12. 如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为( )

    A、55° B、75° C、65° D、85°
  • 13. 如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(   )

    A、3 3 B、6 C、3 2 D、21
  • 14. 如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为(   )

    A、3102 B、3105 C、105 D、355
  • 15.

    如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有(  )

    A、2对 B、3对 C、4对 D、5对
  • 16.

    如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(  )

    A、7 B、8 C、9 D、10
  • 17.

    如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=(  )

    A、65° B、115° C、125° D、130°

二、填空题

  • 18. 正九边形一个内角的度数为.
  • 19. 如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.

  • 20. 如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为.

  • 21. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6. P为对角线BD上一点,则PM—PN的最大值为.   

  • 22. 点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF= 12 AB;G、H分别是BC边上的点,且GH= 13 BC;若S1 , S2分别表示∆EOF和∆GOH的面积,则S1 , S2之间的等量关系是

  • 23. 如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=

  • 24. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为

  • 25.

    如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为

三、解答题

  • 26. 如图, BD//ACBD=BC ,点 EBC 上,且 BE=AC .求证: D=ABC .

  • 27. 如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.

  • 28. 如图,点A,E,F,B在直线l上,AE=BF,AC//BD,且AC=BD,求证:CF=DE

  • 29. 如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.

  • 30. 已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.

  • 31. 如图,在正方形ABCD中,E,F分别为边AD和CD上的点,且AE=CF,连接AF,CE交于点G.求证:AG=CG.


  • 32.

    如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.

    求证:AF∥CE.

四、作图题

  • 33. 如图,已知直线 l1//l2 ,直线 l3 分别与 l1l2 交于点 AB .请用尺规作图法,在线段 AB 上求作点 P ,使点 Pl1l2 的距离相等.(保留作图痕迹,不写作法)

  • 34. 如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)

  • 35. 如图,在△ABC中,AB=AC,AD是BC边上的高。请用尺规作图法,求作△ABC的外接圆。(保留作图痕迹,不写做法)

  • 36. 如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)