福建省漳州市2020-2021学年高一下学期数学期末考试试卷
试卷更新日期:2021-07-09 类型:期末考试
一、单选题
-
1. 复数 ,则 ( )A、 B、 C、 D、52. 某工厂12名工人的保底月薪如下表所示,第80百分位是( )
工人
保底月薪
工人
保底月薪
1
2890
7
2850
2
2860
8
3130
3
3050
9
2880
4
2940
10
3325
5
2755
11
2920
6
2710
12
2950
A、3050 B、2950 C、3130 D、33253. 设 为 所在平面内一点,且 ,则( )A、 B、 C、 D、4. 若圆锥的底面半径为 ,侧面积为 ,则该圆锥的体积为( )A、 B、 C、 D、5. 二十四节气(The 24 Solar Terms)是指中国农历中表示季节变迁的24个特定节令,是根据地球在黄道(即地球绕太阳公转的轨道)上的位置变化而制定的.每个节气对应地球在黄道上运动 所到达的一个位置,根据上述描述,从夏至到立秋对应地球在黄道上运动的角度为( )A、 B、 C、 D、6. 甲、乙、丙、丁四位同学的身高各不相同,从这四位同学中随机抽出三人排成一排,则抽出的三人中恰好身高最高的同学位于中间位置的概率为( )A、 B、 C、 D、7. 如图所示,已知正三棱柱 的所有棱长均为1,则四棱锥 的体积为( )A、 B、 C、 D、8. 在 中, , , ,则 的面积为( )A、 B、 C、 D、二、多选题
-
9. 设i为虚数单位,复数 ,则下列命题正确的是( )A、若 为纯虚数,则实数a的值为2 B、若 在复平面内对应的点在第三象限,则实数a的取值范围是 C、实数 是 ( 为 的共轭复数)的充要条件 D、若 ,则实数a的值为210. 2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静/韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程/金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该队选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,则7个有效评分与9个原始评分相比,可能变化的数字特征是( )A、中位数 B、平均数 C、方差 D、极差11. 设向量 、 满足 ,且 ,则以下结论正确的是( )A、 B、 C、 D、12. 如图,矩形 中, , 为边 的中点.将 沿直线 翻折成 (点 不落在底面 内),若 在线段 上(点 与 , 不重合),则在 翻转过程中,以下命题正确的是( )A、存在某个位置,使 B、存在点M,使得 平面 成立 C、存在点M,使得 平面 成立 D、四棱锥 体积最大值为
三、填空题
-
13. 复数 .14. 某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是 ,则正方体石块的棱长为 .15. 某人5次上班途中所花的时间(单位:分钟)分别为 , ,10,12,8.已知这组数据的平均数为10,方差为2,则 的值为.16. 在平面直角坐标系 中,已知向量 , , .若 ,则 ;若存在两个不同的 值,使得 恒成立,则实数 的取值范围为.
四、解答题
-
17. 已知复数 满足 ,且 的虚部为 , 在复平面内所对应的点在第四象限.(1)、求 ;(2)、若 , 在复平面上对应的点分别为 , , 为坐标原点,求 .18. 从① ,② 这两个条件中选一个,补充到下面问题中,并完成解答.已知 中, , , 分别是内角 , , 所对的边,且 .(1)、求角 ;(2)、已知 ,且 ▲ , 求 的值及 的面积.(注:如果选择多个条件分别解答,按第一个解答计分)19. 如图,在直角△ABC中,点D为斜边BC的靠近点B的三等分点,点E为AD的中点,(1)、用 表示 和 ;(2)、求向量 与 夹角的余弦值.20. 由袁隆平团队研发的第三代杂交水稻于2019年10月21日至22日首次公开测产,经测产专家组评定,最终亩产为1046.3公斤,第三化杂交水稻的综合优势可以推动我国的水稻生产向更加优质、高产、绿色和可持续方向发展.某企业引进一条先进的食品生产线,计划以第三代杂交水稻为原料进行深加工,创建一个新产品,已知该产品的质量以某项指标值 为衡量标准,质量指标的等级划分如表:
质量指标值
产品等级
为了解该产品的生产效益,该企业先进行试生产,从中随机抽取了1000件产品,测量了每件产品的指标值,在以组距为5画频率分布直方图(设“ ”时,发现 满足: , , .
(1)、试确定 的所有取值,并求 ;(2)、从样本质量指标值不小于85的产品中采用按比例分配的分层随机抽样的方法抽取7件产品,然后从这7件产品中一次性随机抽取2件产品,求至少有1件 级品的概率;(3)、求样本质量指标值 的平均数 (各分组区间的数据以该组区间的中点值代表).21. 为进一步增强全市中小学学生和家长的防溺水安全意识,特在全市开展“防溺水安全教育”主题宣传活动.该市水利部门在水塘等危险水域设置警示标志,警示标志如下图所示.其中 , , 均为正方形,且 , .其中 , 为加强支撑管.(1)、若 时,求 到地面距离;(2)、若记 ,求支撑管 最长为多少?22. 如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.