浙江省2021年中考数学真题分类汇编04 一次函数与反比例函数

试卷更新日期:2021-06-29 类型:二轮复习

一、单选题

  • 1. 已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地( )

    A、15km B、16km C、44km D、45km
  • 2. 已知点Pab)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是(   )
    A、ab52 B、ab52 C、ba25 D、ba25
  • 3. 已知 y1y2 均是以 x 为自变量的函数,当 x=m 时,函数值分别是 M1M2 ,若存在实数 m ,使得 M1+M2=0 ,则称函数 y1y2 具有性质P。以下函数 y1y2 具有性质P的是(   )
    A、y1=x2+2xy2=x1 B、y1=x2+2xy2=x+1 C、y1=1xy2=x1 D、y1=1xy2=x+1
  • 4. 如图,点 AB 在反比例函数 y=kxk>0x>0 )的图象上, ACx 轴于点 CBDx 轴于点 DBEy 轴于点 E ,连结 AE .若 OE=1OC=23ODAC=AE ,则 k 的值为(   )

    A、2 B、322 C、94 D、22
  • 5. 如图,正比例函数 y1=k1x(k1<0) 的图象与反比例函数 y2=k2x(k2<0) 的图象相交于A,B两点,点B的横坐标为2,当 y1>y2 时,x的取值范围是(   )

    A、x<2x>2 B、2<x<0x>2 C、x<20<x<2 D、2<x<00<x<2
  • 6. 已知点 A(x1y1)B(x2y2) 在反比例函数 y=12x 的图象上.若 x1<0<x2 ,则(   )
    A、y1<0<y2 B、y2<0<y1 C、y1<y2<0 D、y2<y1<0
  • 7. 已知三个点(x1y1),(x2y2),(x3y3)在反比例函数y2x 的图象上,其中x1x2<0<x3 , 下列结论中正确的是(   )
    A、y2y1<0<y3 B、y1y2<0<y3 C、y3<0<y2y1 D、y3<0<y1y2

二、填空题

  • 8. 如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是.

  • 9. 如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是

  • 10. 将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且 AB=43 ,点E在AD上, DE=14AD ,将这副三角板整体向右平移个单位,C,E两点同时落在反比例函数 y=kx 的图象上.

  • 11. 在平面直角坐标系中,对于不在坐标轴上的任意一点 A(xy) ,我们把点 B(1x1y) 称为点A的“倒数点”.如图,矩形 OCDE 的顶点C为 (30) ,顶点E在y轴上,函数 y=2x(x>0) 的图象与 DE 交于点A.若点B是点A的“倒数点”,且点B在矩形 OCDE 的一边上,则 OBC 的面积为.

  • 12. 如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,顶点B,C在第一象限,顶点D的坐标 (522) . 反比例函数 y=kx (常数 k>0x>0 )的图象恰好经过正方形ABCD的两个顶点,则k的值是.

三、综合题

  • 13. 根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度ym/s)与路程xm)之间的观测数据,绘制成曲线如图所示.

    (1)、y是关于x的函数吗?为什么?
    (2)、“加速期”结束时,小斌的速度为多少?
    (3)、根据如图提供的信息,给小斌提一条训练建议.
  • 14. I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.

    (1)、求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.
    (2)、问无人机上升了多少时间,I号无人机比II号无人机高28米.
  • 15. 某通讯公司就手机流量套餐推出三种方案,如下表:
     

    A方案

    B方案

    C方案

    每月基本费用(元)

    20

    56

    266

    每月免费使用流量(兆)

    1024

    m

    无限

    超出后每兆收费(元)

    n

    n

     

    A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.

    (1)、请直接写出m,n的值.
    (2)、在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.
    (3)、在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?
  • 16. 电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1 , R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 , 该读数可以换算为人的质量m,

    温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I= UR

    ②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.

    (1)、求k,b的值;
    (2)、求R1关于U0的函数解析式;
    (3)、用含U0的代数式表示m;
    (4)、若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.
  • 17. 在直角坐标系中,设函数 y1=k1xk1 是常数, k1>0x>0 )与函数 y2=k2xk2 是常数, k20 )的图象交于点A,点A关于 y 轴的对称点为点B。

    (1)、若点B的坐标为(-1,2),

    ①求 k1k2 的值;  ②当 y1<y2 时,直接写出 x 的取值范围;

    (2)、若点B在函数 y3=k3xk3 是常数, k30 )的图象上,求 k1+k3 的值。
  • 18. 某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.

    营养品信息表

    营养成分

    每千克含铁42毫克

    配料表

    原料

    每千克含铁

    甲食材

    50毫克

    乙食材

    10毫克

    规格

    每包食材含量

    每包单价

    A包装

    1千克

    45元

    B包装

    0.25千克

    12元

    (1)、问甲、乙两种食材每千克进价分别是多少元?
    (2)、该公司每日用18000元购进甲、乙两种食材并恰好全部用完.

    ①问每日购进甲、乙两种食材各多少千克?

    ②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?

  • 19. 背景:点A在反比例函数 y=kx(k>0) 的图象上, ABx 轴于点B,  ACy 轴于点C,分别在射线 ACBO 上取点 DE ,使得四边形 ABED 为正方形.如图1,点A在第一象限内,当 AC=4 时,小李测得 CD=3 .

    探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.

    (1)、求k的值.
    (2)、设点 AD 的横坐标分别为 xz ,将z关于x的函数称为“Z函数”.如图2,小李画出了 x>0 时“Z函数”的图象.

    ①求这个“Z函数”的表达式.

    ②补画 x<0 时“Z函数”的图象,并写出这个函数的性质(两条即可).

    ③过点 (32) 作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.

  • 20. 已知在平面直角坐标系xOy中,点A是反比例函数 y=1x(x>0) 图像上的一个动点,连结AO,AO的延长线交反比例函数 y=kxk>0x<0 )的图像于点B,过点A作AE⊥ y 轴于点E。

    (1)、如图1,过点B作BF⊥ x 轴于点F,连结EF,

    ①若 k=1 ,求证:四边形AEFO是平行四边形;

    ②连结BE,若 k=4 ,求△BOE的面积。

    (2)、如图2,过点E作EP∥AB,交反比例函数 y=kxk>0x<0 )的图像于点P,连结OP。

    试探究:对于确定的实数 k ,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由。