浙江省衢州市2021年中考数学试卷

试卷更新日期:2021-06-25 类型:中考真卷

一、单选题

  • 1. 21的相反数是(   )
    A、  21 B、-21 C、- 121 D、121
  • 2. 如图是由四个相同的小正方体搭成的立体图形,它的主视图是(   )


    A、 B、 C、 D、
  • 3. 2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为1412000000,其中数据1412000000用科学记数法表示为(   )
    A、14.12×108 B、0.1412×1010 C、1.412×109 D、1.412×108
  • 4. 下列计算正确的是(   )
    A、(x2)3=x5 B、x2+x2=x4 C、x2x3=x5 D、x6÷x3=x2
  • 5. 一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是(   )
    A、13 B、23 C、15 D、25
  • 6. 已知扇形的半径为6,圆心角为 150° .则它的面积是(   )
    A、32π B、3π C、5π D、15π
  • 7. 如图,在 ABC 中, AB=4AC=5BC=6 ,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为(   )

    A、6 B、9 C、12 D、15
  • 8. 《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:”五只雀、六只燕,共重1斤(占时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组(   )
    A、{5x+6y=164x+y=5y+x B、{5x+6y=104x+y=5y+x C、{5x+6y=105x+y=6y+x D、{5x+6y=165x+y=6y+x
  • 9. 如图.将菱形ABCD绕点A逆时针旋转 α 得到菱形 AB'C'D'B=β .当AC平分 B'AC' 时, αβ 满足的数量关系是(   )

    A、α=2β B、2α=3β C、4α+β=180° D、3α+2β=180°
  • 10. 已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地( )

    A、15km B、16km C、44km D、45km

二、填空题

  • 11. 若 x1 有意义,则x的值可以是.(写出一个即可)
  • 12. 不等式 2(y+1)<y+3 的解为.
  • 13. 为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为分.
  • 14. 如图,在正五边形ABCDE中,连结AC,BD交于点F,则 AFB 的度数为.

  • 15. 将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且 AB=43 ,点E在AD上, DE=14AD ,将这副三角板整体向右平移个单位,C,E两点同时落在反比例函数 y=kx 的图象上.

  • 16. 图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且 OA=OB ,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得 FA=54cmEB=45cmAB=48cm .

    (1)、椅面CE的长度为cm.
    (2)、如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角 CHD 的度数达到最小值 30° 时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据: sin15°0.26cos15°0.97tan15°0.27

三、解答题

  • 17. 计算: 9+(12)0|3|+2cos60° .
  • 18. 先化简,再求值: x2x3+93x ,其中 x=1 .
  • 19. 如图,在 6×6 的网格中, ABC 的三个顶点都在格点上.

    (1)、在图1中画出 ACD ,使 ACDACB 全等,顶点D在格点上.
    (2)、在图2中过点B画出平分 ABC 面积的直线l.
  • 20. 为进一步做好“光盘行动”,某校食堂推出“半份菜”服务,在试行阶段,食堂对师生满意度进行抽样调查.并将结果绘制成如下统计图(不完整).

    (1)、求被调查的师生人数,并补全条形统计图,
    (2)、求扇形统计图中表示“满意”的扇形圆心角度数.
    (3)、若该校共有师生1800名,根据抽样结果,试估计该校对食堂“半份菜”服务“很满意”或“满意”的师生总人数.
  • 21. 如图,在 ABC 中, CA=CB ,BC与 A 相切于点D,过点A作AC的垂线交CB的延长线于点E,交 A 于点F,连结BF.

    (1)、求证:BF是 A 的切线.
    (2)、若 BE=5AC=20 ,求EF的长.
  • 22. 如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.

    (1)、求桥拱项部O离水面的距离.
    (2)、如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.

    ①求出其中一条钢缆抛物线的函数表达式.

    ②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.

  • 23. 如图1,点C是半圆O的直径AB上一动点(不包括端点), A B = 6 cm ,过点C作 C D A B 交半圆于点D,连结AD,过点C作 C E / / A D 交半圆于点E,连结EB.牛牛想探究在点C运动过程中EC与EB的大小关系.他根据学习函数的经验,记 A C = x cm E C = y 1 cm E B = y 2 cm .请你一起参与探究函数 y 1 y 2 随自变量x变化的规律.

    通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.

    x 0.30 0.80 1.60 2.40 3.20 4.00 4.80 5.60
    y1 2.01 2.98 3.46 3.33 2.83 2.11 1.27 0.38
    y2 5.60 4.95 3.95 2.96 2.06 1.24 0.57 0.10

    (1)、当 x=3 时, y1.
    (2)、在图2中画出函数 y2 的图象,并结合图象判断函数值 y1y2 的大小关系.
    (3)、由(2)知“AC取某值时,有 EC=EB ”.如图3,牛牛连结了OE,尝试通过计算EC,EB的长来验证这一结论,请你完成计算过程.
  • 24. 如图,

    (1)、【推理】
    如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.

    求证: BCECDG .
    (2)、【运用】
    如图2,在(推理)条件下,延长BF交AD于点H.若 HDHF=45CE=9 ,求线段DE的长.
    (3)、【拓展】
    将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,两点,若 ABBC=kHDHF=45 ,求 DEEC 的值(用含k的代数式表示).