河南省南阳市镇平县2021年九年级下学期数学调研试卷(一)
试卷更新日期:2021-05-08 类型:中考模拟
一、单选题
-
1. 在﹣1,0,2, 四个数中,最大的数是( )A、﹣1 B、0 C、2 D、2. 为了解数学学科各分数段成绩分布情况,从中抽取400名考生的数学成绩进行统计分析,在这个问题中,样本是指( )A、400 B、被抽取的400名考生的中考数学成绩 C、被抽取的400名考生 D、数学成绩3. 抛物线 的顶点坐标是( )A、 B、 C、 D、4. 布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A、 B、 C、 D、5. 关于二次函数 ,下列说法正确的是( )A、图象与y轴的交点坐标为 B、图象的对称轴在y轴的右侧 C、当 时,y的值随x值的增大而减小 D、y的最小值为-36. 如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则 的值为( )A、1 B、 C、 -1 D、 +17. 如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( )A、40海里 B、60海里 C、20 海里 D、40 海里8. 如图, 是 的弦,点C在过点B的切线上,且 , 交 于点P,已知 ,则 为( )A、 B、 C、 D、9. 如图,在平面直角坐标系 中,点A,P分别在x轴、y轴上,点B的坐标为 , 是等边三角形,将线段 绕点P顺时针旋转 得到线段 ,则点C的坐标为( )A、 B、 C、 D、10. 如图1,四边形 是菱形,对角线 相交于点O,P,Q两点同时从点O出发,以1厘米/秒的速度在菱形的对角线及边上运动.P,Q的运动路线:点P为 ,点Q为 .设运动的时间为x秒,P,Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,则菱形 的面积为( )A、 B、 C、 D、
二、填空题
-
11. 化简 的结果是.12. 已知关于x的一元二次方程 有两个不相等的实数根.m的取值范围是.13. 将抛物线y=3x2﹣6x+4先向右平移3个单位,再向上平移2个单位后得到新的抛物线,则新抛物线的顶点坐标是.14. 如图, 中, 长为 , ,将 绕点A逆时针旋转 至 ,则边 扫过区域(图中阴影部分)的面积为 .15. 如图,已知正方形 ,边长为2,E是 边上的一点,连接 ,将 沿 所在直线折叠,使点A的对应点 落在正方形的边 或 的垂直平分线上,则 的长度是.
三、解答题
-
16. 先化简,再求值: .其中 .17. 为了解学生最喜爱的球类运动,某初中在全校2000名学生中抽取部分学生进行调查,要求学生只能从“A(篮球)、B(羽毛球)、C(足球)、D(乒乓球)”中选择一种.(1)、小明直接在八年级学生中随机调查了一些同学.他的抽样是否合理?请说明理由.(2)、小王从各年级随机抽取了部分同学进行调查,整理数据,绘制出下列两幅不完整的统计图.请根据图中所提供的信息,回答下列问题:
①请将条形统计图补充完整;
②估计该初中最喜爱乒乓球的学生人数约为 ▲ 人.
18. 在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1与x轴交于点A,B.(点A在点B的左侧)(1)、求m的取值范围;(2)、当m取最大整数时,求点A、点B的坐标.19. 某数学课外兴趣小组为了测量建在山丘 上的宝塔 的高度,在山脚下的广场A处测得建筑物点D(即山顶)的仰角为 ,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为 ,已知山丘 高37.69米,求塔的高度 .(结果精确到1米,参考数据: )20. 如图, 为 的直径,C为半圆上一动点,过点B作 的切线l的垂线 ,垂足为D, 与 交于点E,连接 交 于点F.(1)、求证: ;(2)、若 ,连接 .①当 时,四边形 为菱形;
②当 时,四边形 为正方形.
21. 如图,二次函数 的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且 , ,对称轴是直线 .(1)、求二次函数的解析式;(2)、若M是第四象限抛物线上一动点,且横坐标为m,设四边形 的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形 的面积最大.22. 小亮在学习中遇到了这样一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,即 ,点D在 上, 于点E,射线 与射线 交于点F, ,顶点D在斜边 上移动,设 两点间的距离为 , 两点间的距离为 , 两点间的距离为 .
(1)、当点F与点C重合时,求x的长度(保留一位小数);(2)、通过测量,得到了x与 的几组值,如下表:0
1
2
3
4
5
6
6.9
5.3
4.0
3.3
3.5
4.5
6
将线段 的长度作为自变量x, 和 的都是x的函数,请在同一平面直角坐标系 中画出函数 和 的图象;
(3)、结合图象直接写出:当 为等边三角形时, 长度的近似值(结果保留一位小数)23. 如图(1)、问题发现如图1,在 和 中, ,点D是线段 上一动点,连接 .
填空:① 的值为 , ② 的度数为;
(2)、类比探究如图2,在 和 中, ,点D是线段 上一动点,连接 .请判断 的值及 的度数,并说明理由;
(3)、拓展延伸如图3,在(2)的条件下,将点D改为直线 上一动点,其余条件不变.取线段 的中点M,连接 ,若 ,以B、C、D、M为顶点的四边形是菱形时,则菱形的边长是多少?请直接写出答案.