湘教版备考2021年中考数学二轮复习专题12二次根式
试卷更新日期:2021-04-27 类型:二轮复习
一、单选题
-
1. 小林在计算时遇到以下情况,结果正确的是( )A、 B、 C、 D、2. 下列各式中能与 合并的二次根式的是( ).A、 B、 C、 D、3. 若 ,则 的取值范围是( )A、 B、 C、 D、4. 如果二次根式 在实数范围内有意义,那么x的取值范围是( )A、x≠﹣3 B、x≤﹣3 C、x≥﹣3 D、x>﹣35. 化简后的结果为( )A、 B、 C、 D、6. 已知1<a<3,则化简 ﹣ 的结果是( )A、2a﹣5 B、5﹣2a C、﹣3 D、37. 等式 成立的条件是( ).A、x≥1 B、x≥-1 C、-1≤x≤1 D、x≥1或x≤-18. 下列各实数中最大的一个是( )A、5× B、 C、 D、 +9. 已知 , , 表示取三个数中最大的那个数﹒例如:当 , , , = , , =81﹒当 , , = 时,则 的值为( )A、 B、 C、 D、10. “分母有理化”是我们常用的一种化简的方法,如: ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于 ,设x= ,易知 > ,故x>0,由x2= = =2,解得x= ,即 。根据以上方法,化简 后的结果为( )A、5+3 B、5+ C、5- D、5-3
二、填空题
-
11. 式子 在实数范围内有意义,则x的取值范围是.12. 计算 •( ﹣ )+ •( ﹣ )的结果是.13. 若x<2,化简 的正确结果是.14. 若x= ﹣1,则x3+x2﹣3x+2035的值为.15. 若 ,则 的取值范围是 .16. 化简 =17. 观察下列等式:
① ;
②
③
…
参照上面等式计算方法计算:
.
18. 化简 .19. 已知a、b是正整数,如果有序数对(a, b)能使得2 的值也是整数,那么称(a,b)是2 的一个“理想数对”。如(1,1)使得2 =4,(4,4)使得2 所以(1,1)和(4,4)都是2 的“理想数对”,请你再写出一个2 的“理想数对”: .20. 设m、x、y均为正整数,且 ,则(x+y+m)²=.三、计算题
-
21. 先阅读下面的解题过程,然后再解答.形如 的化简,我们只要找到两个数a,b,使 , ,即 , ,那么便有: .
例如化简: .
解:首先把 化为 ,
这里 , ,
由于 , ,
所以 ,
所以 .
根据上述方法化简: .
22. 观察下列等式:①② ;
③ ;……
回答下列问题:
(1)、利用你观察到的规律,①化简:
②仿照上例等式,写出第n个式子
(2)、计算: .四、解答题
-
23. 先阅读下面材料,然后再根据要求解答提出的问题:
设a、b是有理数,且满足 ,求 的值?
解: 由题意得: ,
因为a、b都是有理数,
所以a-3、b+2也是有理数,
由于 是无理数,
所以a-3=0、b+2=0,
所以a=3、b=-2,
所以 ,
问题: 设x、y都是有理数,且满足 ,求x+y的值,
24. 若x,y为实数,且 ,化简: .五、综合题
-
25. 阅读下列材料,然后回答问题,在进行二次根式的化简与运算时,我们有时会碰上如如 一样的式子,其实我们还可以将其进一步化简:
= = (1)
以上这种化简的步骤叫做分母有理化.
还可以用以下方法化简:
= (2)
(1)、请参照(1)(2)的方法用两种方法化简:方法一: =
方法二: =
(2)、直接写出化简结果: = =(3)、计算: + + +…+ +26. 有这样一类题目:将 化简,如果你能找到两个数m、n,使m2+n2=a 且mn= ,则a±2 将变成m2+n2±2mn,即变成(m±n)2 , 从而使 得以化简.例如,因为5+2 =3+2+2 =( )2+( )2+2 × =( + )2 , 所以 = .请仿照上面的例子化简下列根式:
(1)、(2)、27. 观察下列等式:解答下列问题:
(1)、写出一个无理数,使它与 的积为有理数;(2)、利用你观察的规律,化简 ;(3)、计算: .