河南省2021年数学中考二模试卷

试卷更新日期:2021-04-22 类型:中考模拟

一、单选题

  • 1. -3的相反数是(   )
    A、13 B、-3 C、13 D、3
  • 2. 下列运算中,正确的是( )
    A、x2+2x2=3x4 B、x2x3=x5 C、(x3)2=x5 D、(xy)2=x2y
  • 3. 已知:如图, OAOBO 的两条半径, AOB=100° ,点C在 O 上,则 ACB 的度数为(   )

    A、45° B、35° C、60° D、50°
  • 4. 如图,由5个完全相同的小正方体组合成一个立体图形,它的俯视图是(   )

    A、 B、 C、 D、
  • 5. 某中学组织全区优秀九年级毕业生参加学校冬令营,一共有x名学生,分成y个学习小组.若每组10人,则还差5人;若每组9人,还余下3人.若求冬令营学生的人数,所列的方程组为(   )
    A、{10x=y+59x=y3 B、{10y=x59y=x+3 C、{10y=x+59y=x3 D、{10x=y59x=y+3
  • 6. 某校开展“疫情防控小卫士”活动,从学生会“督查部”的4名学生(2男2女)中随机选两名进行督导每日一次体温测量,恰好选中男女学生各一名的概率是(   )
    A、13 B、49 C、23 D、29
  • 7. 不等式组 {x+3<x5x>m+1 的解集是 x>4 ,那么m的取值范围是(   )
    A、m=3 B、m3 C、m<3 D、m3
  • 8. 对于二次函数y=﹣x2﹣4x+5,以下说法正确的是(   )
    A、x<﹣1时,y随x的增大而增大 B、x<﹣5或x>1时,y>0 C、A(﹣4,y1),B( 2 ,y2)在y=﹣x2﹣4x+5的图象上,则y1<y2 D、此二次函数的最大值为8
  • 9. 如图, CDABC 的边 AB 上的中线,将线段 AD 绕点D顺时针旋转 90° 后,点A的对应点E恰好落在 AC 边上,若 AD=2BC=5 ,则 CE 的长为(   )

    A、7 B、2 C、3 D、1
  • 10. 如图,在平面直角坐标系中,四边形ABCD是菱形,AB∥x轴,点B的坐标为(4,1),∠BAD=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形ABCD的两边分别交于点M,N(点N在点M的上方),连接OM,ON,若△OMN的面积为s,直线l的运动时间为t秒(0≤t≤6),则S与t的函数图象大致是(   )

    A、 B、 C、 D、

二、填空题

  • 11. 据报道,郑州市私家车拥有量近4500000辆,将数据4500000用科学记数法表示为.
  • 12. 计算 81(13)2= .
  • 13. 若关于x的一元二次方程 2mx23x+1=0 有两个不相等的实数根,则实数m的取值范围是.
  • 14. 如图,在正方形 ABCD 外作等腰直角三角形 CDECED=90°DE=CE ,连接 BE ,则 tanDEB= .

  • 15. 如图,在矩形纸片ABCD中,AB=4,BC=4 2 ,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A'EF,连接A'C,A'D,则当△A'DC是以A'D为腰的等腰三角形时,FD的长是.

三、解答题

  • 16. 先化简,再求值: (a+1a1+1a22a+1)÷aa1 ,其中 a=3+1 .
  • 17. 距离中考体考时间越来越近,学校想了解初三年级1512名学生周末在家体育锻炼的情况,在初三年级随机抽取了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了以下数据(单位:分钟)

    男生:28,30,32,46,68.39,80,70,66,57,70,95,100,58,69,88,99,105

    女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72

    分析数据:两组数据的平均数、中位数、众数如表所示:

    平均数

    中位数

    众数

    方差

    男生

    66.7

    a

    70

    617.3

    女生

    69.7

    70.5

    b

    547.2

    (1)、若将上面的表格补充完整; a=_____,b=_____
    (2)、已知该年级男女生人数差不多,根据调查的数据,估计初三年级周末在家锻炼的时间在90分钟以上(不包含90分钟)的同学约有多少人?
    (3)、王老师看了表格数据后认为初三年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持王老师观点的理由.
  • 18. 疫情期间,为了保障大家的健康,各地采取了多种方式进行预防,某地利用无人机规劝居民回家.如图,一条笔直的街道 DC ,在街道 C 处的正上方 A 处有一架无人机,该无人机在 A 处测得俯角为 45° 的街道 B 处有人聚集,然后沿平行于街道 DC 的方向再向前飞行60米到达 E 处,在 E 处测得俯角为 37° 的街道 D 处也有人聚集,已知两处聚集点 BD 之间的距离为120米,求无人机飞行的高度 AC .(参考数据: sin37°0.6cos37°0.8tan37°0.7521.414 )

  • 19. 如图,一次函数 y=kx+b 的图象与反比例函数 y=mx 的图象交于A,B两点,一次函数与坐标轴交于C,D两点,且点C,D是线段 AB 的三等分点, OD=4tanDCO=23 .

    (1)、求一次函数与反比例函数的解析式;
    (2)、求 AOB 的面积.
  • 20. 甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段 OA 表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线 BCD 表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题.

    (1)、轿车到达乙地时,求货车与甲地的距离.
    (2)、求线段 CD 对应的函数表达式.
    (3)、在轿车行进过程中,轿车行驶多少时间,两车相距15千米.
  • 21. 某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y(万件)与销售单价x(元)之间的函数关系如下表所示:

    销售单价x(元)

    25

    30

    35

    40

    每月销售量y(万件)

    50

    40

    30

    20

    (1)、求每月销售量y(万件)与销售单价x(元)之间的函数关系式;
    (2)、设每月的利润为W(万元)当销售单价为多少元时,厂商每月获得的总利润为480万元?
    (3)、如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
  • 22. 如图,抛物线y=﹣ 12 x2+bx+c与x轴交于点A(4,0),与y轴交于点B,且OA=OB,在x轴上有一动点D(m,0)(0<m<4),过点D作x轴的垂线交直线AB于点C,交抛物线于点E,

    (1)、求抛物线的函数表达式.
    (2)、当点C是DE的中点时,求出m的值.
    (3)、在(2)的条件下,将线段OD绕点O逆时针旋转得到OD′,旋转角为α(0°<a<90°),连接D′A、D′B,直接写出D′A+ 12 D′B的最小值.
  • 23. 定义:长宽比为 n :1(n为正整数)的矩形称为 n 矩形.

    下面,我们通过折叠的方式折出一个 2 矩形,如图a所示.

    操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.

    操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为 2 矩形.

    (1)、证明:四边形ABCD为 2 矩形;
    (2)、点M是边AB上一动点.

    ①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;

    ②若AM=AD,点N在边BC上,当△DMN的周长最小时,求 CNNB 的值;

    ③连接CM,作BR⊥CM,垂足为R.若AB=2 2 ,则DR的最小值=           .