2016年广西桂林市中考数学试卷
试卷更新日期:2016-08-15 类型:中考真卷
一、选择题:
-
1. 下列实数中小于0的数是( )A、2016 B、﹣2016 C、 D、2. 如图,直线a∥b,c是截线,∠1的度数是( )A、55° B、75° C、110° D、125°3. 一组数据7,8,10,12,13的平均数是( )A、7 B、9 C、10 D、124. 下列几何体的三视图相同的是( )A、圆柱 B、球 C、圆锥 D、长方体5. 下列图形一定是轴对称图形的是( )A、直角三角形 B、平行四边形 C、直角梯形 D、正方形6. 计算3 ﹣2 的结果是( )A、 B、2 C、3 D、67. 下列计算正确的是( )A、(xy)3=xy3 B、x5÷x5=x C、3x2•5x3=15x5 D、5x2y3+2x2y3=10x4y98. 如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是( )A、x=2 B、x=0 C、x=﹣1 D、x=﹣39. 当x=6,y=3时,代数式( )• 的值是( )
A、2 B、3 C、6 D、910. 若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )A、k<5 B、k<5,且k≠1 C、k≤5,且k≠1 D、k>511. 如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是( )A、π B、 C、3+π D、8﹣π12. 已知直线y=﹣ x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣ (x﹣ )2+4上,能使△ABP为等腰三角形的点P的个数有( )A、3个 B、4个 C、5个 D、6个二、填空题:
-
13. 分解因式:x2﹣36= .14. 若式子 在实数范围内有意义,则x的取值范围是 .15. 把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是 .16. 正六边形的每个外角是度.17. 如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH= .18. 如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是 .
三、解答题:
-
19. 计算:﹣(﹣4)+|﹣5|+ ﹣4tan45°.20. 解不等式组: .21. 如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)、根据题意,补全原形;(2)、求证:BE=DF.22. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)、本次抽取样本容量为 , 扇形统计图中A类所对的圆心角是度;(2)、请补全统计图;(3)、若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?23. 已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S= (其中a,b,c是三角形的三边长,p= ,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9
(1)、用海伦公式求△ABC的面积;(2)、求△ABC的内切圆半径r.24. 五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)、求甲、乙两种救灾物品每件的价格各是多少元?(2)、经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?25. 如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)、证明点C在圆O上;(2)、求tan∠CDE的值;(3)、求圆心O到弦ED的距离.26.如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2 , 点A,B的对应点分别为点D,E.
(1)、直接写出点A,C,D的坐标;(2)、当四边形ABDE是矩形时,求a的值及抛物线y2的解析式;
(3)、在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.