初中数学湘教版八年级下学期期中复习专题7 三角形的中位线
试卷更新日期:2021-04-01 类型:复习试卷
一、单选题
-
1. 如图,要测量被池塘隔开的A,B两点的距离,小明在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE,现测得DE=45米,那么AB等于( )A、90米 B、88米 C、86米 D、84米2. 如图,在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,下列结论成立的是( )A、线段EF的长逐渐增大 B、线段EF的长逐渐减小 C、线段EF的长不变 D、线段EF的长与点P的位置有关3. 如图,在 中, , , ,点 , , 分别是 三边中点,则 的周长为( )A、 B、 C、 D、4. 如图,已知矩形ABCD中,R, P分别是DC,BC上的点,E,F分别是AP,RP的中点.当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是( ).A、线段EF的长逐渐增大 B、线段EF的长逐渐减少 C、线段EF的长不变 D、线段EF的长不能确定5. 如图,△ABC的中线BD,CE交于点O,连接OA,点G,F分别为OC,OB的中点,BC=8,A0=6,则四边形DEFG的周长为( ).A、12 B、14 C、16 D、186. 三角形的三条中位线长分别为2cm、3cm、4cm,则原三角形的周长为( ).A、4.5cm B、18cm C、9cm D、36cm7. 如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE=( )A、4 B、3 C、2 D、58. 如图所示,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,若BC=6,则OE的长为( )A、2 B、2.5 C、3 D、49.
如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )
A、1 B、2 C、3 D、410. 如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是( )A、线段EF的长逐渐增大 B、线段EF的长逐渐减小 C、线段EF的长不变 D、线段EF的长与点P的位置有关二、填空题
-
11. 如图,在△ABC中,P , Q分别为AB , AC的中点.若S△APQ=1,则S四边形PBCQ= .12. 如图,在△MBN 中,已知:BM=6,BN=7,MN=10,点 A C,D 分别是 MB,NB,MN 的中点,则四边形 ABCD 的周长 是 .13. 如图是跷跷板的示意图,立柱 与地面垂直,以 为横板 的中点, 绕点 上下转动,横板 的 端最大高度 是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设 , ,通过计算得到此时的 ,再将横板 换成横板 , 为横板 的中点,且 ,此时 点的最大高度为 ,由此得到 与 的大小关系是: (填“ 、“ ”或“ ”)可进一步得出, 随横板的长度的变化而(填“不变”或“改变”).14. 如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有个15. 如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为16. 如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是
三、解答题
-
17.
如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H分别是DE、BE、BC的中点.
(1)求∠FGH度数;
(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.
18. 如图,四边形ABCD中,已知AB=CD,点E、F分别为AD、BC的中点,延长BA、CD,分别交射线FE于P、Q两点.求证:∠BPF=∠CQF.19.如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.
四、综合题