湖南省永州市2021届高三下学期数学二模试卷
试卷更新日期:2021-03-29 类型:高考模拟
一、单选题
-
1. 已知 , 是 的子集,且 ,则 ( )A、 B、 C、 D、2. 若复数 对应的点是 ,则 ( )A、 B、 C、-1 D、13. 在边长为3的等边三角形 中, ,则 ( )A、 B、 C、 D、4. 已知 , , ,则( )A、 B、 C、 D、5. 2019年湖南等8省公布了高考改革综合方案,将采取“ ”模式,即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在政治、地理、化学、生物中选择2门.则某同学选到物理、地理两门功课的概率为( )A、 B、 C、 D、6. 我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列说法不正确的是( )A、小寒比大寒的晷长长一尺 B、春分和秋分两个节气的晷长相同 C、小雪的晷长为一丈五寸 D、立春的晷长比立秋的晷长长7. 曲线 在 处的切线 过原点,则 的方程是( )A、 B、 C、 D、8. 已知函数 在区间 上的最大值为 ,则实数 的取值个数最多为( )A、1 B、2 C、3 D、49. 抛物线 : 的焦点为 , 是其上一动点,点 ,直线 与抛物线 相交于 , 两点,下列结论正确的是( )A、 的最小值是2 B、动点 到点 的距离最小值为3 C、存在直线 ,使得 , 两点关于直线 对称 D、与抛物线 分别相切于 、 两点的两条切线交于点 ,若直线 过定点 ,则点 在抛物线 的准线上
二、多选题
-
10. 下列说法正确的是( )A、线性回归方程 对应的直线至少经过其样本数据点中的一个点 B、10件产品中有7件正品,3件次品,从中任取2件,恰好取到1件次品的概率为 C、某高中为了解在校学生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本,已知该校高一、高二、高三年级学生之比为 ,则应从高二年级中抽取20名学生 D、从装有2个红球和2个黑球的口袋内任取2个球,“至少有一个黑球”与“至少有一个红球”是互斥而不对立的事件11. 关于多项式 的展开式,下列结论正确的是( )A、各项系数之和为1 B、二项式系数之和为 C、存在常数项 D、 的系数为1212. 是正方体 中线段 上的动点(点 异于点 ),下列说法正确的是( )A、 B、异面直线 与 所成的角是 C、 的大小与 点位置有关 D、二面角 的大小为
三、填空题
-
13. 若对 ,都有 ,则实数 的取值范围是.14. 大约在2000多年前,我国的墨子给出了圆的概念“一中同长也”,意思是说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下定义要早100多年.现有一动点 满足 ,其中 为坐标原点,若 ,则 的最小值为.15. 已知 为坐标原点,双曲线 : 的离心率为 ,从双曲线 的右焦点 引渐近线的垂线,垂足为 ,若 的面积为 ,则双曲线 的方程为.16. 定义方程 的实数根 叫做函数 的“新驻点”.(1)、设 ,则 在 上的“新驻点”为;(2)、如果函数 与 的“新驻点”分别为 、 ,那么 和 的大小关系是.
四、解答题
-
17. 已知函数 .(1)、求函数 的最小正周期;(2)、在 中,角 、 、 所对边分别为 、 、 ,若 , , 的面积为 ,求 外接圆的面积.18. 给定三个条件:① , , 成等比数列,② ,③ ,从上述三个条件中,任选一个补充在下面的问题中,并加以解答.
问题:设公差不为零的等差数列 的前 项和为 ,且 ,___________.
(1)、求数列 的通项;(2)、若 ,数列 的前 项和 ,求证: .19. 为快速控制新冠病毒的传播,全球多家公司进行新冠疫苗的研发.某生物技术公司研制出一种新冠灭活疫苗,为了检测其质量指标,从中抽取了100支该疫苗样本,经统计质量指标得到如图所示的频率分布直方图.(1)、求所抽取的样本平均数 (同一组中的数据用该组区间的中点值作代表);(2)、将频率视为概率,若某家庭购买4支该疫苗,记这4支疫苗的质量指标值位于 内的支数为 ,求 的分布列和数学期望.20. 在如图所示的圆柱 中, 为圆 的直径, , 是 的两个三等分点, , , 都是圆柱 的母线.(1)、求证: 平面 ;(2)、若 ,求二面角 的余弦值.