2016年四川省资阳市中考数学试卷
试卷更新日期:2016-07-22 类型:中考真卷
一、选择题.
-
1. ﹣2的倒数是( )A、﹣ B、 C、﹣2 D、22. 下列运算正确的是( )
A、x4+x2=x6 B、x2•x3=x6 C、(x2)3=x6 D、x2﹣y2=(x﹣y)23.如图是一个正方体纸盒的外表面展开图,则这个正方体是( )
A、 B、 C、 D、4. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( )A、7.6× B、7.6× C、7.6× D、7.6×5. 的运算结果应在哪两个连续整数之间( )A、2和3 B、3和4 C、4和5 D、5和66. 我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款金额(元)
5
10
15
20
25
30
人数
3
7
11
11
13
5
则该班同学筹款金额的众数和中位数分别是( )
A、11,20 B、25,11 C、20,25 D、25,207.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于( )
A、2 B、3 C、4 D、无法确定8.在Rt△ABC中,∠ACB=90°,AC=2 ,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是( )
A、2 ﹣ π B、4 ﹣ π C、2 ﹣ π D、π9.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB= ,EF=2,∠H=120°,则DN的长为( )
A、 B、 C、﹣ D、2 ﹣10. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1 , m)、B(x1+n,m)两点,则m、n的关系为( )A、m= n B、m= n C、m= D、m=二、填空题.
-
11. 若代数式 有意义,则x的取值范围是 .
12.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=
13. 已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第象限.14.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是
15. 设一列数中相邻的三个数依次为m、n、p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=
16.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为 ;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是
三、解答题.
-
17. 化简:(1+ )÷ .18.
近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.
(1)、补全条形统计图;(2)、求出“D”所在扇形的圆心角的度数;(3)、为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”(100km≤R<150km),B表示“纯电动乘用车”(150km≤R<250km),C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.
19. 某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)、求出A型、B型污水处理设备的单价;(2)、经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.20.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.
(1)、求证:∠A=∠BDC;(2)、若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y= (k≠0,x>0)过点D.
(1)、求双曲线的解析式;(2)、作直线AC交y轴于点E,连结DE,求△CDE的面积.22.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.
(1)、求出此时点A到岛礁C的距离;(2)、若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)23.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.
(1)、如图1,若点F与点A重合,求证:AC=BC;(2)、若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;
②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.
24.已知抛物线与x轴交于A(6,0)、B(﹣ ,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.
(1)、求此抛物线的解析式;(2)、如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;
②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.