浙江省台州市2021届九年级上学期数学期末考试试卷
试卷更新日期:2021-03-09 类型:期末考试
一、单选题
-
1. 在 中, , ,那么 的值等于( )A、 B、 C、 D、2. 抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是( )A、小于 B、等于 C、大于 D、无法确定3. 函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A、y=﹣2(x﹣1)2+2 B、y=﹣2(x﹣1)2﹣2 C、y=﹣2(x+1)2+2 D、y=﹣2(x+1)2﹣24. 若反比例函数 的图象经过 ,则这个函数的图象一定过( )A、 B、 C、 D、5. 如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数为( )A、25° B、50° C、65° D、75°6.
如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的( )
A、= B、= C、= D、=7. 如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=( )A、 B、 C、 D、8. 如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于( )A、80° B、75° C、70° D、65°9. 如图,在平面直角坐标系中,Rt△ABC的顶点,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数(k>0,x>0)的图象经过AC的中点D,则k的值为( )A、8 B、5 C、6 D、410. 对于实数a、b,定义运算“★”:a★b= ,关于x的方程(2x+1)★(2x-3)=t恰好有两个不相等的实数根,则t的取值范围是( )A、t< B、t> C、t< D、t>二、填空题
-
11. 二次函数y=x2﹣2x+3图象的顶点坐标为 .12. 一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是 .如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是 ,则原来盒中有白色弹珠颗.13. 用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为.14. 如图,l1∥l2∥l3 , 且l1 , l2之间的距离为2,l2 , l3之间的距离为3.若点A,B,C分别在直线l1 , l2 , l3上,且AC⊥BC,AC=BC,则AB的长是.15. 如图,一次函数 的图象交x轴于点B,交y轴于点A,交反比例函数 的图象于点 ,若 ,且 的面积为2,则k的值为16. 如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为 上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是.(写出所有正确结论的序号)
①PB=PD;② 的长为 π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP为定值.
三、解答题
-
17. 计算: .18. 太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为 ,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面, 于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)19. 如图,△ABC内接于⊙O,AB为直径,∠BAC=60°,延长BA至点P使AP=AC, 作CD平分∠ACB交AB于点E,交⊙O于点D. 连结PC,BD.(1)、求证:PC为⊙O的切线;(2)、求证:BD= PA;(3)、若PC= ,求AE的长.20. 如图,已知反比例函数y= 的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)、求n和b的值;(2)、求△OAB的面积;(3)、直接写出一次函数值大于反比例函数值的自变量x的取值范围.21. 某中学开展了四项体育锻炼活动:A:篮球;B:足球;C:跳绳;D:跑步.陈老师对学生最喜欢的一项体育锻炼活动进行了抽样调查(每人只限一项),并将 调查结果绘制成图 1,图2两幅不完整的统计图.
请根据图中信息解答下列问题:
(1)、参加此次调查的学生总数是人;将图1、图2的统计图补充完整;(2)、已知在被调查的最喜欢篮球的3名学生中只有1名男生,现从这3名学生中任意抽取2名学生参加校篮球队,请用列表法或画树状图的方法,求出恰好抽到两名女生的概率.
22. 定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)、判断下列命题是真命题,还是假命题?①正方形是自相似菱形;
②有一个内角为60°的菱形是自相似菱形.
③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.
(2)、如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;
②AC,BD交于点O,求tan∠DBC的值.
23. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)、当销售单价为70元时,每天的销售利润是多少?(2)、求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)、如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)24. 如图,A,B,C,D四点都在OO上,弧AC=弧BC,连接AB,CD、AD,∠ADC=45°.(1)、如图1,AB是⊙O的直径;(2)、如图2,过点B作BE⊥CD于点E,点F在弧AC上,连接BF交CD于点G,∠FGC=2∠BAD,求证:BA平分∠FBE;(3)、如图3,在(2)的条件下,MN与⊙O相切于点M,交EB的延长线于点N,连接AM,若2∠MAD+∠FBA=135°,MN= AB,EN=26,求线段CD的长.