2016年湖南省邵阳市中考数学试卷
试卷更新日期:2016-07-05 类型:中考真卷
一、选择题:本大题共10小题,每小题3分,共30分
-
1. ﹣ 的相反数是( )A、 B、﹣ C、﹣ D、﹣22. 下面四个手机应用图标中是轴对称图形的是( )
A、 B、 C、 D、3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是( )
A、10° B、50° C、80° D、100°4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是( )
A、95 B、90 C、85 D、805. 一次函数y=﹣x+2的图象不经过的象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限6. 分式方程 = 的解是( )
A、x=﹣1 B、x=1 C、x=2 D、x=37. 一元二次方程2x2﹣3x+1=0的根的情况是( )A、有两个相等的实数根 B、有两个不相等的实数根 C、只有一个实数根 D、没有实数根8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是( )
A、AC>BC B、AC=BC C、∠A>∠ABC D、∠A=∠ABC9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( )
A、15° B、30° C、60° D、75°10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是( )
A、y=2n+1 B、y=2n+n C、y=2n+1+n D、y=2n+n+1二、填空题:本大题共8小题,每小题3分,共24分
-
11. 将多项式m3﹣mn2因式分解的结果是 .
12. 学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手
甲
乙
平均数(环)
9.5
9.5
方差
0.035
0.015
请你根据上表中的数据选一人参加比赛,最适合的人选是 .
13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是 .
14.已知反比例函数y= (k≠0)的图象如图所示,则k的值可能是(写一个即可).
15. 不等式组 的解集是 .
16.2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是 .
17.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.
18.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是 .
三、解答题:本大题共3小题,每小题8分,共24分
-
19. 计算:(﹣2)2+2cos60°﹣( )0 .
20. 先化简,再求值:(m﹣n)2﹣m(m﹣2n),其中m= ,n= .
21.如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.
四、解答题:本大题共3小题,每小题8分,共24分
-
22.
如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26, ).
23.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.
(1)、求A,B两种品牌的足球的单价.(2)、求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.
请结合图中信息,解决下列问题:
(1)、求此次调查中接受调查的人数.(2)、求此次调查中结果为非常满意的人数.(3)、兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分
-
25.
尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.
求证:a2+b2=5c2
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故 ,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证
(1)、请你根据以上解题思路帮尤秀同学写出证明过程.(2)、利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.
26.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.
(1)、求抛物线的解析式.(2)、设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为 ?若存在,求点M的坐标;若不存在,请说明理由.
②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.