2016年浙江省丽水市中考数学试卷
试卷更新日期:2016-07-01 类型:中考真卷
一、选择题
-
1. 下列四个数中,与﹣2的和为0的数是( )A、﹣2 B、2 C、 D、﹣2. 计算32×3﹣1的结果是( )A、3 B、﹣3 C、2 D、﹣23. 下列图形中,属于立体图形的是( )A、 B、 C、 D、4. + 的运算结果正确的是( )A、 B、 C、 D、a+b5. 某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是( )
年级
七年级
八年级
九年级
合格人数
270
262
254
A、七年级的合格率最高 B、八年级的学生人数为262名 C、八年级的合格率高于全校的合格率 D、九年级的合格人数最少6. 下列一元二次方程没有实数根的是( )A、x2+2x+1=0 B、x2+x+2=0 C、x2﹣1=0 D、x2﹣2x﹣1=07.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为( )
A、13 B、17 C、20 D、268. 在直角坐标系中,点M,N在同一个正比例函数图象上的是( )A、M(2,﹣3),N(﹣4,6) B、M(﹣2,3),N(4,6) C、M(﹣2,﹣3),N(4,﹣6) D、M(2,3),N(﹣4,6)9. 用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A、 B、 C、 D、10.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是 上一点,BD交AC于点E,若BC=4,AD= ,则AE的长是( )
A、3 B、2 C、1 D、1.2二、填空题
-
11. 分解因式:am﹣3a= .
12.如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为 .
13. 箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是 .
14. 已知x2+2x﹣1=0,则3x2+6x﹣2= .
15. 如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则 = .16.如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.
(1)、b=(用含m的代数式表示);(2)、若S△OAF+S四边形EFBC=4,则m的值是 .三、解答题
-
17. 计算:(﹣3)0﹣|﹣ |+ .18. 解不等式:3x﹣5<2(2+3x)19.
数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.
请你运用所学的数学知识解决这个问题.
20.为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图两个统计图,请结合统计图信息解决问题.
(1)、“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)、若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)、请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.21.2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回中点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:
(1)、求图中a的值;(2)、组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.①求AB所在直线的函数解析式;
②该运动员跑完赛程用时多少分钟?
22.如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.
(1)、求证:AD是半圆O的切线;(2)、连结CD,求证:∠A=2∠CDE;(3)、若∠CDE=27°,OB=2,求 的长.
23.如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y= x2﹣ x+3的绳子.
(1)、求绳子最低点离地面的距离;(2)、因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)、将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为 ,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.24.如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.
(1)、当E为BC中点时,求证:△BCF≌△DEC;(2)、当BE=2EC时,求 的值;(3)、设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是 ,求n的值.