湖南省益阳市桃江县2019-2020学年九年级上学期数学期末试卷

试卷更新日期:2020-12-22 类型:期末考试

一、单选题

  • 1. 点(4,-1)在反比例 y=kx 的图象上,则下列各点在此函数图象上的是(   )
    A、(4,1) B、(14,1) C、(4,1) D、(14,2)
  • 2. 用配方法解方程 x26x8=0 时,配方结果正确的是(    )
    A、(x3)2=17 B、(x3)2=14 C、(x6)2=44 D、(x3)2=1
  • 3. 一元二次方程 4x22x1=0 的根的情况为(   )
    A、有两个相等的实数根 B、只有一个实数根 C、有两个不相等的实数根 D、没有实数根
  • 4. 如图,以点O为位似中心,把 ΔABC 放大为原图形的2倍得到 ΔA'B'C' ,若 ΔABCΔA'B'C' 的位似比为k,则以下结论中正确的是(   )

    A、k=2 B、k=2 C、k=12 D、k=12
  • 5. 如图,在 ΔABC 中, C=90°BC=4AB 的垂直平分线 EFAC 于点D,连接 BD ,若 sinBDC=45 ,则 AC 的长是(   )

    A、43 B、26 C、10 D、8
  • 6. 如图,在 ΔABC 中,点D为 BC 边上的一点,且 AD=AB=2ADABBC 于D,过点D作 DEADAC 于点E,若 DE=1 ,则 ΔABC 的面积为(   )

    A、32 B、4 C、23 D、3
  • 7. 下列说法错误的是(    )
    A、在一定条件下,可能发生也可能不发生的事件称为随机事件 B、一组数据中出现次数最多的数据称为这组数据的众数 C、方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大 D、全面调查和抽样调查是收集数据的两种方式
  • 8. 如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是(   )

    A、ac<0 B、b24ac>0 C、2ab=0 D、ab+c=0

二、填空题

  • 9. 一元二次方程 x2+xk=0 有一根为 2 ,则k的值为
  • 10. 如图,在平面直角坐标系中,点A的坐标为 (42) ,反比例函数 y=kx(x<0) 的图象经过线段OA的中点B,则k=

  • 11. 如图,人字梯AB,AC的长都为2米。当a=50°时,人字梯顶端高地面的高度AD是米(结果精确到0.1m。参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)

  • 12. 如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:

  • 13. 平面直角坐标系中,二次函数 y=x2+1 的图象的顶点坐标为
  • 14. 某地区九年级男生共有12000人,为了该地区九年级男生的身高情况,随机调查了其中100名男生的身高 x(cm) ,并统计如下:

    组别 (cm)

    x<160

    160x<170

    170x<180

    x180

    人数

    5

    38

    42

    15

    根据以上结果,估计该地区九年级男生身高不低于170 cm 的人数是.

三、解答题

  • 15. 已知关于x的一元二次方程 x2(2k+1)x+k21=0 有两个不相等的实数根 x1x2
    (1)、求k的取值范围;
    (2)、若 x1x2=0 ,求k的值.
  • 16. 如图,在 ΔABC 中, AC=2BC=4 ,D是 BC 边上的一点,且 CAD=BAB=BD ,求 AD 的长.

  • 17. 如图,公路某地段安装了一个测速仪器,检测点在公路上方10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知 B=30°C=45° .(参考数据: 31.721.4

    (1)、求B、C之间的距离;
    (2)、如果此地段限速为 80km/h ,那么这辆汽车是否超速?请说明理由.
  • 18. 2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注,某市一研究机构为了了解10—60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了如下尚不完整的频数分布表、频数分布走访图和扇形统计图:

    组别

    年龄段

    频数(人数)

    第1组

    10≤x<20

    5

    第2组

    20≤x<30

    a

    第3组

    30≤x<40

    35

    第4组

    40≤x<50

    20

    第5组

    50≤x<60

    15

    (1)、请直接写出a、m的值及扇形统计图中第3组所对应的圆心角的度数;
    (2)、请补全上面的频数分布直方图;
    (3)、假设该市现有10—60岁的市民300万人,问第4组年龄段关注本次大会的人数经销商有多少人?
  • 19.     2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
    (1)、求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
    (2)、若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
  • 20. 如图,在平面直角坐标系 xOy 中,二次函数图象的顶点坐标为 (43) ,该图象与 x 轴相交于点 AB ,与 y 轴相交于点 C ,其中点 A 的横坐标为1.

    (1)、求该二次函数的表达式;
    (2)、求 tanABC
  • 21. 如图, A 为反比例函数 y=kx (x>0)图象上的一点,在 x 轴正半轴上有一点 BOB=4 .连接 OAAB ,且 OA=AB=210 .

    (1)、求 k 的值;
    (2)、过点 BBCOB ,交反比例函数 y=kx (x>0)的图象于点 C ,连接 OCAB 于点 D ,求 ADDB 的值.
  • 22. 如图1,在等边 ΔABC 中, AB=6cm ,动点P从点A出发以 1cm/s 的速度沿 AB 匀速运动,动点Q同时从点C出发以同样的速度沿 BC 的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为 t(s) ,过点P作 PEAC 于E, PQAC 边于D,线段 BC 的中点为M,连接 PM

    (1)、当t为何值时, ΔCDQΔMPQ 相似;
    (2)、在点P、Q运动过程中,点D、E也随之运动,线段 DE 的长度是否会发生变化?若发生变化,请说明理由,若不发生变化,求 DE 的长;
    (3)、如图2,将 ΔBPM 沿直线 PM 翻折,得 ΔB'PM ,连接 AB' ,当t为何值时, AB' 的值最小?并求出最小值.