河北省保定市定州市2019-2020学年九年级上学期数学期末试卷

试卷更新日期:2020-11-05 类型:期末考试

一、单选题

  • 1. 一元二次方程x2﹣3x﹣4=0的一次项系数是(  )
    A、1 B、﹣3 C、3 D、﹣4
  • 2. 点 P(43) 关于原点的对称点是 (     )
    A、(43) B、(34) C、(43) D、(34)
  • 3. 下列成语表示随机事件的是(    )
    A、水中捞月 B、水滴石穿 C、瓮中捉鳖 D、守株待兔
  • 4. 下列四个点中,在反比例函数y6x 的图象上的是(  )
    A、(﹣3,﹣2) B、(3,2) C、(﹣2,3) D、(﹣2,﹣3)
  • 5. 若 x2=y7=z5 ,则 x+yzx 的值是(  )
    A、1 B、2 C、3 D、4
  • 6. 如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为(   )

    A、40° B、50° C、80° D、100°
  • 7. 给出下列函数,其中yx的增大而减小的函数是(  )

    y=2x;②y=﹣2x+1;③y2xx<0);④yx2x<1).

    A、①③④ B、②③④ C、②④ D、②③
  • 8. 如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则 B 的大小为(   )

    A、30° B、40° C、50° D、60°
  • 9. 如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是(  )

    A、6 B、15 C、24 D、27
  • 10. 在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆与y轴(  )
    A、相交 B、相切 C、相离 D、无法确定
  • 11. 已知x1 , x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是( )
    A、14 B、14 C、4 D、-1
  • 12. 如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为(  )

    A、12 B、34 C、1 D、2
  • 13. 如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为(   )

    A、105° B、115° C、125° D、135°
  • 14. 如图,正方形ABCD的顶点CDx轴上,AB恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为(  )

    A、6 B、8 C、10 D、12
  • 15. 如图是二次函数yax2+bx+ca≠0)的图象的一部分,给出下列命题:

    a+b+c=0;

    b>2a

    ax2+bx+c=0的两根分别为﹣3和1;

    c=﹣3a

    其中正确的命题是(  )

    A、①② B、②③ C、①③ D、①③④

二、填空题

  • 16. 某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是
  • 17. 如图,抛物线 y=ax2 与直线 y=bx+c 的两个交点坐标分别为 A(24)B(11) ,则关于x的方程 ax2bxc=0 的解为.

  • 18. 如图,点A、B、C在半径为9的⊙O上, AB 的长为 ,则∠ACB的大小是

  • 19. 如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y= 3x 的图象经过A、B两点,则菱形ABCD的面积是

三、解答题

  • 20. 已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.
    (1)、求实数k的取值范围;
    (2)、写出满足条件的k的最大整数值,并求此时方程的根.
  • 21. 不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4.
    (1)、随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;
    (2)、随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.
  • 22. 如图,已知点A(a,3)是一次函数y1=x+1与反比例函数y2kx 的图象的交点.

    (1)、求反比例函数的解析式;
    (2)、在y轴的右侧,当y1>y2时,直接写出x的取值范围;
    (3)、求点A与两坐标轴围成的矩形OBAC的面积.
  • 23. 某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:

    x(元)

    15

    20

    30

    y(袋)

    25

    20

    10

    若日销售量y是销售价x的一次函数,试求:

    (1)、日销售量y(袋)与销售价x(元)的函数关系式;
    (2)、假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?
  • 24. 如图, RtABC 中, ACB=90°AC=BCPABC 内部一点,且 APB=BPC=135° .

    (1)、求证: PABPBC
    (2)、求证: PA=2PC .
  • 25. 如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作 DEAP 交AP于E点.

    (1)、求证:DE为⊙O的切线;
    (2)、若DE=3,AC=8,求直径AB的长.
  • 26.

    如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.

    (1)、求抛物线的解析式;

    (2)、点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;

    (3)、在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.