四川省遂宁市蓬溪县2019-2020学年九年级上学期数学期中试卷

试卷更新日期:2020-10-16 类型:期中考试

一、单选题

  • 1. 下列代数式中,属于二次根式的为( )
    A、4 B、x3 C、a1(a1) D、2
  • 2. 已知(x-1)2y+2 =0,则(x+y)2的算术平方根是(    )
    A、±1 B、1 C、-1 D、0
  • 3. 下列方程中,是关于x的一元二次方程的为(    )
    A、1x21x ﹣2=0 B、x3+2x=(x﹣1)(x﹣2) C、ax2+bx+c=0 D、a2+1)x2=0
  • 4. 关于x的一元二次方程 (a1)x2+2ax+1a2=0 有一个根是 0 ,则 a=(     )
    A、1 B、-1 C、±1 D、0
  • 5. 某超市7月份的营业额是200万元,第三季度的营业额共1000万元,如果每月的增长率都是x,根据题意列出的方程应该是(    )
    A、200(1+x)2=1000 B、200(1+2x)=1000 C、200+200(1+x)+200(1+x)2=1000 D、200(1+3x)=1000
  • 6. 已知x、y都是实数,且(x2+y2)(x2+y2+2)﹣3=0,那么x2+y2的值是( )
    A、﹣3 B、1 C、﹣3或1 D、﹣1或3
  • 7. 画在图纸上的某一零件的长度是32mm , 如果比例尺是1:15,则该零件的实际长度是(    )
    A、3215 mm B、480mm C、48mm D、408mm
  • 8. 下列说法中正确的是(    )
    A、所有的矩形都相似 B、所有的菱形都相似 C、所有的正方形都相似 D、所有的等腰梯形都相似
  • 9. 若 x2=y3=z4 ≠0,则下列各式中正确的是(    )
    A、x+y5z4 B、2x=3y=4z C、x+y+z9 =1 D、x+34y+43
  • 10. 若 αβ 是一元二次方程 x2+2x6=0 的两根,则 α2+β2= (    )
    A、-8 B、32 C、16 D、40
  • 11. 如图,棋盘上若“将”位于(2,﹣2),“象”位于(4,﹣2),则“炮”位于(    )

    A、(﹣2,1) B、(﹣1,2) C、(﹣1,1) D、(﹣2,2)
  • 12. 在梯形ABCD中,ABCDCE平分∠BCDCEADEDE=2AE . 若△CED面积为1,则四边形ABCE的面积为(    )
    A、14 B、78 C、12 D、34
  • 13. 已知ab满足a2﹣6a+2=0,b2﹣6b+2=0,则 ba+ab =(    )
    A、﹣6 B、2 C、16 D、16或2
  • 14. 若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为(  )

    A、1 B、2 C、-1 D、-2
  • 15. 如图,已知AD是△ABC的中线,AE=EF=FC,下面给出三个关系式:①AG:AD=1:2;②GE:BE=1:3③BE:BG=4:3,其中正确的是( )

    A、①②③ B、①② C、②③ D、①③
  • 16. 如图,在△ABC中,DEFGBC , 且ADDFFB=1:2:3,则SADES四边形DFGES四边形FBCG等于(    )

    A、1:9:36 B、1:4:9 C、1:8:27 D、1:8:36

二、填空题

  • 17. 若y= x3+3x+4 ,则x+y=
  • 18. 已知线段AB=2,点CAB的黄金分割点,且ACBC , 那么BC
  • 19. 如果关于x的方程x2﹣4x+m2=0有两个相等的实数根,那么m
  • 20. 两个相似三角形周长的差是4,对应中线的比是4:5,那么较大三角形的周长是
  • 21. 如图:△ABC中,AB=4,AC=6,AD平分∠BACBDADEBC中点,那么DE

  • 22. 已知a、b为有理数,m、n分别表示 57 的整数部分和小数部分,且amn+bn2=1,则2a+b=
  • 23. 如图,DAC上一点,BEACBEADAE分别交BDBC于点FG , ∠1=∠2.若DF=8,FG=4,则GE

  • 24. 在平面直角坐标系中,将线段AB平移到A′B′,若点A、B、A′的坐标分别是(-2,0),(0,3),(2,1),则点B′的坐标是

三、解答题

  • 25. 计算:
    (1)、222+18 412
    (2)、( 5+2 )( 52 )﹣( 322
  • 26. 解方程:
    (1)、(2x1)2=9
    (2)、x2+3x4=0 (用配方法);
    (3)、3x2+5(2x+1)=0 (用公式法);
    (4)、7x(5x+2)=6(5x+2)
  • 27. 先化简,再求值:( 1x+1+1x1÷2x1x ,其中x2 ﹣1.
  • 28. 如图,四边形DEFG是△ABC的内接正方形,DG分别在ABAC上,EFBC上,AH是△ABC的高,已知BC=20,AH=16,求正方形DEFG的边长.

  • 29. 如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为 570m2 ,道路应为多宽?

  • 30. 如图,小明要测量操场旗杆高度AH . 立两根高1米的标杆BCDE , 两竿相距BD=15米,DBH成一线,小明从BC退行2米到F , 着地观察AACF三点共线;从DE退行3米步到G , 从GAAEG三点也共线.请你帮小明算出旗杆的高度AHHB的距离.

  • 31. 关于 x 的方程 (12k)x22(k+1)x12k=0 有实根.
    (1)、若方程只有一个实根,求出这个根;
    (2)、若方程有两个不相等的实根 x1x2 ,且 1x1+1x2=6 ,求 k 的值.
  • 32. 如图,四边形ABCD中,AC平分∠DAB , ∠ADC=∠ACB=90°,EAB的中点,ACDE于点F

    (1)、求证:AC2ABAD
    (2)、求证:CEAD
    (3)、若AD=5,AB=6,求 ACAF 的值.