贵州省遵义市桐梓县2020届九年级上学期数学期中考试试卷
试卷更新日期:2020-10-12 类型:期中考试
一、选择题
-
1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A、 B、 C、 D、2. 今年1月3日,我国的嫦娥四号探测器成功在月球背面着陆,标志着我国已经成功开始了对月球背面的研究,填补了国际空白.月球距离地球的平均距离为384000千米,数据384000用科学记数法表示为( )A、 B、 C、 D、3. 下列运算正确的是( )A、 B、 C、 D、4. 平面直角坐标系内一点 关于原点对称点的坐标是( )A、 B、 C、 D、5. 已知a是方程x2+3x﹣1=0的根,则代数式a2+3a+2019的值是( )A、2020 B、﹣2020 C、2021 D、﹣20216. 如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=10°,且AD∥OC,则∠BOC的度数为( )A、110° B、100° C、105° D、120°7. 已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为( )A、7 B、5 C、 D、5或8. 某市2017年平均房价为每平方米5000元,2019年平均房价涨到每平方米9000元.设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是( )A、5000 =9000 B、5000 =9000 C、9000 =5000 D、9000 =50009. 在同一直角坐标系中,函数 和函数 (m是常数,且 )的图象可能是( )A、 B、 C、 D、10. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为 的直径,弦 ,垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A、12寸 B、13寸 C、24寸 D、26寸11. 设 , , 是抛物线 的三点,则 , , 的大小关系为( )A、 B、 C、 D、12. 抛物线 的图象如图所示,则下列说法中:① ;② ;③方程 没有实数根;④ (m为任意实数),正确的有( )个A、1个 B、2个 C、3个 D、4个
二、填空题
-
13. 若关于x的方程x2﹣2x+m=0有一根为3,则m=;方程另一个根为.14. 如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°,得到△DCF,连接EF,若∠BEC=60°,BE=4,则EF的长为.15. 如图,D,E,F分别是边BC,AD,AC上的中点,若阴影的面积为6,则△ABC的面积是.16. 如图,△ABC中,∠C=90°,∠B=60°,在AC边上取点O画圆,使⊙O经过A、B两点,下列结论中:①AO=BC;②AO=2CO;③延长BC交⊙O与D,则A、B、D是⊙O的三等分点;④以O为圆心,以OC为半径的圆与AB相切.正确的序号是.
三、解答题
-
17. 计算: .18. 用适当的方法解方程:(1)、x2+x﹣2=0(2)、x(2x+3)=4x+6.19. 为更好地践行社会主义核心价值观,让同学们珍惜粮食,学会感恩.校学生会积极倡导“光盘行动”,某天午餐后学生会干部随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成如图所示的不完整的统计图.(1)、这次被调查的同学共有名.(2)、补全条形统计图.(3)、计算在扇形统计图中剩一半饭菜所对应扇形圆心角的度数;(4)、校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供40人用餐.据此估算,全校2000名学生一餐浪费的食物可供多少人食用一餐?20. 关于x的一元二次方程mx2+(2m+1)x+m=0有两个实数根.(1)、求m的取值范围(2)、是否存在实数m,使方程的两实数根的倒数和为0?若存在,请求出m的值;若不存在,请说明理由.21. 某玩具商店以成本为每件60元购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价5元,则每天可多卖10件.(1)、若商店平均每天盈利1200元,每件玩具的售价应定为多少元?(2)、若商店为增加效益最大化,每件玩具的售价定为多少元时,商店平均每天盈利最多?最多盈利多少元?22. 如图,点A是⊙O直径BD延长线上的一点,AC是⊙O的切线,C为切点.AD=CD,(1)、求证:AC=BC;(2)、若⊙O的半径为1,求△ABC的面积.23. 如图,在等腰直角三角形ABC中,∠C=90°,AB=8 ,点O是AB的中点.将一个边长足够大的Rt△DEF的直角顶点E放在点O处,并将其绕点O旋转,始终保持DE与AC边交于点G,EF与BC边交于点H.(1)、当点G在AC边什么位置时,四边形CGOH是正方形.(2)、等腰直角三角ABC的边被Rt△DEF覆盖部分的两条线段CG与CH的长度之和是否会发生变化,如不发生变化,请求出CG与CH之和的值:如发生变化,请说明理由.24. 抛物线y=ax2+bx+c与x轴交于A,B两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C,C点的坐标为(0,﹣2),连接BC,以BC为边,点O为对称中心作菱形BDEC.点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)、求抛物线的解析式.(2)、x轴上是否存在一点P,使三角形PBC为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.(3)、当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?请说明理由.