江西省宜春市高安市2019-2020学年七年级上学期数学期中试卷

试卷更新日期:2020-09-28 类型:期中考试

一、单选题

  • 1. 12 的倒数是(    )
    A、2 B、12 C、2 D、1
  • 2. 夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为(    )元.
    A、+4 B、﹣9 C、﹣4 D、+9
  • 3. 2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元。其中920.7万用科学记数法表示为(  )
    A、920.7×104 B、92.07×105 C、9.207×105 D、9.207×106
  • 4. 下列计算正确的是(   )
    A、7a+a=7a2 B、3x2y2yx2=x2y C、5y3y=2 D、3a+2b=5ab
  • 5. 有理数 ab 在数轴上的位置如图所示,下面结论正确的是(    )

    A、ba<0 B、ab>0 C、a+b>0 D、|a|>|b|
  • 6. 下列说法正确的有(    )个

    ①一个数前面加上“-”号,这个数就是负数    ②单项式 32πx2y 的系数是 32   

    ③若a是正数,则-a不一定是负数    ④零既不是正数也不是负数

    ⑤多项式 x3y2xy4y23 是四次四项式,常数项是-6     ⑥零是最小的整数

    A、1 B、2 C、3 D、4

二、填空题

  • 7. 用四舍五入法对23.96取近似值,其中精确到十分位的是
  • 8. 下列各式: 13x2x22xπ14x3 ,0, x2+2x1 中整式有个.
  • 9. 代数式 4x6yx2ny 是同类项,则常数n的值为
  • 10. 已知 |x|=6|y|=5 ,且 x>y ,则 2x+y 值为
  • 11. 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是
  • 12. 如果代数式 2a2+3b+8 的值为2,那么代数式 4a2+6b+12 的值等于

三、解答题

  • 13. 计算:
    (1)、8+2.5+6+1.5
    (2)、(8)×(2)16÷(4)
  • 14. 计算: |223|(32)÷(3)
  • 15. 化简下列各式:
    (1)、2a23a2+5a2
    (2)、(b+3a)+(ba)
  • 16. 化简: 3(a2b+2b)2(a2b3b)
  • 17. 先化简,再求值: 3(y+7xy)4(5xyy)6y ,其中 x=2019y=1
  • 18. 小红某星期微信收发红包记录如下:收到22.9元,发出9.9元,收到8.8元,发出35.5元,收到3.7元,发出6.6元,收到4.8元,这时她的微信钱包里的数量是增加了还是减少了?增加或减少了多少钱?
  • 19. 一条隧道的横截面如图所示,它的上部是一个半径为r的半圆,下部是一个长方形,长方形的一边长为2.5米,隧道横截面为S平方米.

    (1)、用r的代数式表示S;
    (2)、当 r=2 时,求S的值.( π 取3.14 )
  • 20. 有理数xy在数轴上对应点如图所示:

    (1)、在数轴上表示﹣x , |y|;
    (2)、试把xy , 0,﹣x , |y|这五个数从小到大用“<”号连接,
    (3)、化简:|x+y|﹣|yx|+|y|.
  • 21. 已知关于x的整式 (|k|3)x3+(k3)x2k
    (1)、若此整式是单项式,求k的值;
    (2)、若此整式是二次多项式,求k的值;
    (3)、若此整式是二项式,求k的值.
  • 22. 定义:若 AB=1 ,则称A与B是关于1的单位数,但B与A不是关于1的单位数.
    (1)、3与是关于1的单位数, x3是关于1的单位数(填一个含x的式子).
    (2)、若 A=3(x2+2x)1B=2(32x2+3x1) ,判断A与B是否是关于1 的单位数,并说明理由.
  • 23. 如图,在数轴上A点表示数a,B点表示数b,C点表示数c,已知数b是最小的正整数,且a、c满足 |a+2|+(c7)2=0

    (1)、a= , b= , c=
    (2)、若将数轴折叠,使得点A与点C重合,则点B与数表示的点重合;
    (3)、点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为 AB ,点A与点C之间的距离表示为 AC ,点B与点C之间的距离表示为 BC ,求 ABACBC 的长(用含t的式子表示);
    (4)、在(3)的条件下, 3BC2AB 的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,请求其值.