内蒙古呼和浩特土默特左旗2019-2020学年九年级上学期数学期中试卷

试卷更新日期:2020-09-28 类型:期中考试

一、单选题

  • 1. 下列图形既是轴对称图形又是中心对称图形的是(     )
    A、 B、 C、 D、
  • 2. 抛物线y=2(x-1)2+3的顶点坐标是(   )
    A、(1 , 3) B、( -1 , 3 ) C、(1 , -3 ) D、(-1 , - 3)
  • 3. 将二次函数y=x2-4x+2化为顶点式,正确的是(    )
    A、y=(x2)22 B、y=(x2)2+3 C、y=(x+2)22 D、y=(x2)2+2
  • 4. 某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x , 根据题意列出的方程是(   )
    A、100(1+x)2=280 B、100(1+x)+100(1+x)2=280 C、100(1x)2=280 D、100+100(1+x)+100(1+x)2=280
  • 5. 设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=(x-1)2-3上的三点,则y1 , y2 , y3的大小关系为(     )
    A、y1>y2>y3 B、y1>y3>y2 C、y3>y2>y1 D、y3>y1>y2
  • 6. 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△EFC的位置,其中E、F分别是A、B的对应点,且点B在斜边EF上,直角边CE交AB于D,则旋转角等于( ).

    A、70° B、80° C、60° D、50°
  • 7. 如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在 AB 位置时,水面宽度为 10m ,此时水面到桥拱的距离是 4m ,则抛物线的函数关系式为(       )

    A、y=254x2 B、y=254x2 C、y=425x2 D、y=425x2
  • 8. 在同一直角坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致是(   )
    A、 B、 C、 D、
  • 9. 二次函数y1ax2+bx+c与一次函数y2mx+n的图象如图所示,则满足ax2+bx+cmx+nx的取值范围是(   )

    A、﹣3<x<0 B、x<﹣3或x>0 C、x<﹣3 D、0<x<3
  • 10. 抛物线 y=ax2+bx+c 的顶点为 D(13) ,与 x 轴的一个交点 A 在点 (30)(20) 之间,其部分图象如图所示,则以下结论:① abc>0 ;② a+b+c<0 ;③ ac=3 ;④方程以 ax2+bx+c+3=0 有两个的实根,其中正确的个数为(      )

    A、1 B、2 C、3 D、4

二、填空题

  • 11. 若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为.
  • 12. 求经过A(1,4),B(﹣2,1)两点,对称轴为x=﹣1的抛物线的解析式
  • 13. 将抛物线 y=x2 先向左平移 2 个单位,再向下平移 3 个单位,所得抛物线的解析式为
  • 14. 已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则 1m+1n
  • 15. 若(x2+y2﹣1)(x2+y2+1)=8,则x2+y2的值是
  • 16. 如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为

  • 17. 如图,在直角三角形ABC中,∠C=90º,AC=6厘米,BC=8厘米,点P、Q同时由A、C两点出发,分别沿AC、CB方向匀速运动,它们的速度都是每秒1厘米,P点运动秒时,△PCQ面积为4平方厘米.

  • 18.

    如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为

三、解答题

  • 19. 解方程:
    (1)、4(x﹣2)2﹣49=0.
    (2)、x2﹣5x﹣7=0.
    (3)、(2x+1)(x﹣2)=3.
    (4)、3x(x﹣2)=2(2﹣x).
  • 20. 如图,在方格网中已知格点△ABC

    (1)、试在图中画出△ABC以A为旋转中心,沿顺时针旋转90后的图形△AB1C1
    (2)、请在方格网中标出使以点A、B、C、D为顶点的四边形是中心对称图形的点D(标出一个即可).
  • 21. 我校校区正在修建,如图,按图纸规划,需要在一个长30m、宽20m的长方形ABCD空地上修建三条同样宽的通道(AB=20m),使其中两条与AB平行,另一条与AD平行,其余部分种植草皮.要使草地总面积为468m2 , 那么通道的宽应设计为多少m?

  • 22. 已知关于x的一元二次方程x2-(2m+2)x+m2+m+5=0有实数根
    (1)、求实数m的范围;
    (2)、如果方程两根之积等于35,求方程的根.
  • 23. 如图所示,已知抛物线y=-x2+bx+c的部分图象,A(1,0),B(0,3)

    (1)、求抛物线的解析式
    (2)、结合图象,写出当y<3时x的取值范围(作适当说明)
  • 24. 某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
    (1)、求商场经营该商品原来一天可获利润多少元?
    (2)、设后来该商品每件降价x元,商场一天可获利润y元.

    ①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?

    ②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.