河北省唐山市丰南区2019-2020学年八年级上学期数学期中试卷

试卷更新日期:2020-09-25 类型:期中考试

一、单选题

  • 1. 下列四个图案中,不是轴对称图形的是(    ).
    A、 B、 C、 D、
  • 2. 如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为(   )

    A、30° B、40° C、50° D、60°
  • 3. 已知等腰三角形的两边长是5cm和10cm,则它的周长是(   )
    A、21cm B、25cm C、20cm D、20cm或25cm
  • 4. 如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于(  )

    A、120° B、115° C、110° D、105°
  • 5. 如图, ABCA'B'C'ACB=90°A'CB=20° ,则 BCB' 的度数为(    ).

    A、30° B、40° C、60° D、70°
  • 6. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是(  )

    A、十三边形 B、十二边形 C、十一边形 D、十边形
  • 7. 如图,若 ABC 是等边三角形, AB=6BDABC 的平分线,延长 BC 到E,使 CE=CD ,则 BE 的长为(    ).

    A、6 B、7 C、8 D、9
  • 8. 如图, ABC=90°ACB=30°ABCAB1C1B1C1AC 交于点D.若 BAB1=15°AC=12 ,则 AB1D 的面积为(    ).

    A、6 B、12 C、18 D、36
  • 9. 如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC点E,AC的长为12cm,则△BCE的周长等于(    )

    A、16cm B、20cm C、24cm D、26cm
  • 10. 如图, A+B+C+D+E 的度数为(    ).

    A、180° B、210° C、270° D、360°
  • 11. 如图, ABC 中,以B为圆心, BC 长为半径画弧,分别交 ACAB 于D,E两点,并连接 BDDE .若 A=30°AB=AC ,则 BDE 的度数为(    ).

    A、45° B、52.5° C、62.5° D、67.5°
  • 12. 将一副三角板按如图所示方式叠放在一起,若 AB=8 ,则阴影部分的面积是(    ).

    A、8 B、10 C、12 D、14

二、填空题

  • 13. 在平面直角坐标系中,点 A(4,a) 与点 B(b,4) 关于x轴对称,则 a+b 的值是
  • 14. 如图,已知AB=BD,∠A=∠D若直接应用“SAS”判定△ABC≌△DBE,则需要添加的一个条件 是.

  • 15. 如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.

  • 16. 如图, ABC 中, AC=AD=BDDAC=80° ,则 B 的度数是

  • 17. 如图,正三角形的三个内角平分线交于O点,则 21=

  • 18. 三个全等三角形按如图的形式摆放,若∠1=88°,则∠2+∠3=°.

  • 19. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,SABC=7,DE=2,AB=4,则AC的长是

  • 20. 已知如图所示,∠MON=40°,P为∠MON内一点,A为OM上一点,B为ON上一点,则当△PAB的周长取最小值时,∠APB的度数为

三、解答题

  • 21.                  
    (1)、已知 ABC 中, A=80°B=40°CDABC 的角平分线,求 ADC 的度数.

    (2)、已知:如图, ABAEADACE=BDE=CB .求证: AD=AC

  • 22. 如图,在 ABE 中, AB=AEAD=ACBC=EDBCDE 交于点O.求证:

    (1)、BAD=EAC
    (2)、OB=OE
  • 23. 如图,在四边形ABCD中,点E、F是BC、CD的中点,且AE⊥BC,AF⊥CD.

    (1)、求证:AB=AD.
    (2)、请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.
  • 24. 如图,在△ABC 中,AB=AC,点D,E在边BC上,且BD=CE.

    (1)、求证: △ABD≌△ACE;
    (2)、若∠B=40°,AB=BE,求∠DAE的度数.
  • 25. 如图,在 ABC 中, AB=ACBAC=120°AB 的垂直平分线交 AB 于E,交 BC 于M; AC 的垂直平分线交 AC 于F,交 BC 于N.连接 AMAN

    (1)、求 MAN 的大小;
    (2)、求证: BM=CN