四川省成都市武侯区2019-2020学年八年级下学期数学期末试卷
试卷更新日期:2020-09-23 类型:期末考试
一、单选题
-
1. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A、 B、 C、 D、2. 已知a<b,下列不等关系式中正确的是( )A、a+3>b+3 B、3a>3b C、﹣a<﹣b D、﹣ >﹣3. 多项式2m+4与多项式m2+4m+4的公因式是( )A、m+2 B、m﹣2 C、m+4 D、m﹣44. 将直线y=﹣4x向下平移2个单位长度,得到的直线的函数表达式为( )A、y=﹣4x﹣2 B、y=﹣4x+2 C、y=﹣4x﹣8 D、y=﹣4x+85. 在▱ABCD中,已知∠A=60°,则∠C的度数是( )A、30° B、60° C、120° D、60°或120°6. 如图,将等边 ABC向右平移得到 DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为( )A、2 B、4 C、 D、27. 矩形具有而菱形不一定具有的性质是( )A、对角相等 B、对边相等 C、对角线相等 D、对角线互相垂直8. 若分式 的值为0,则x的值为( )A、0 B、1 C、﹣1 D、±19. 如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是( )A、x<0 B、x<1 C、0<x<1 D、x>110. 如图,在4×4的网格纸中, ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将 ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有( )A、点M,点N B、点M,点Q C、点N,点P D、点P,点Q
二、填空题
-
11. 如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形
是 边形.
12. 如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4 ,则线段OE的长为 .13. 如图,在Rt ACB中,∠C=90°,AB=2 ,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于 EF的长为半径画弧,两弧相交于点P,作射线BP交AC于点D,若CD=1,则 ABD的面积为 .14. 已经Rt ABC的面积为 ,斜边长为 ,两直角边长分别为a,b.则代数式a3b+ab3的值为 .15. 已知a=b﹣2 ,则代数式 的值为 .16. 若关于x的不等式组 的解集为﹣ <x<﹣6,则m的值是 .17. 若关于x的分式方程 = +2有正整数解,则符合条件的非负整数a的值为 .18. 如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2 ,则线段BC的长为 .19. 如图,在矩形ABCD中,∠ACB=30°,BC=2 ,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为(用含a的代数式表示), ADG的面积的最小值为 .三、解答题
-
20.(1)、因式分解:x3﹣8x2+16x.(2)、解方程:2﹣ = .21. 解不等式组 ,并把解集表示在下面的数轴上.22. 先化简,再求值: ÷(a+ ),其中a= ﹣2.23. 如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy, ABC的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).(1)、平移 ABC,使得点A的对应点为A1(2,﹣1),点B,C的对应点分别为B1 , C1 , 画出平移后的 A1B1C1;(2)、在(1)的基础上,画出 A1B1C1绕原点O顺时针旋转90°得到的 A2B2C2 , 其中点A1 , B1 , C1的对应点分别为A2 , B2 , C2 , 并直接写出点C2的坐标.24. 如图1,在 ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接DE,现将 ADE绕点A逆时针旋转一定角度(如图2),连接BD,CE.(1)、求证: ABD≌ ACE;(2)、延长BD交CE于点F,若AD⊥BD,BD=6,CF=4,求线段DF的长.25. 如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF与DE相交于点M,且∠BAF=∠ADE.(1)、如图1,求证:AF⊥DE;(2)、如图2,AC与BD相交于点O,AC交DE于点G,BD交AF于点H,连接GH,试探究直线GH与AB的位置关系,并说明理由;(3)、在(1)(2)的基础上,若AF平分∠BAC,且 BDE的面积为4+2 ,求正方形ABCD的面积.26. 全国在抗击“新冠肺炎”疫情期间,甲,乙两家公司共同参与一项改建有1800个床位的方舱医院的工程.已知甲,乙两家公司每小时改建床位的数量之比为3:2.且甲公司单独完成此项工程比乙公司单独完成此项工程要少用20小时,(1)、分别求甲,乙两家公司每小时改建床位的数量;(2)、甲,乙两家公司完成该项工程,若要求乙公司的工作时间不得少于甲公司的工作时间的 ,求乙公司至少工作多少小时?27. 如图,在菱形ABCD中,∠ABC=120°,AB=4 ,E为对角线AC上的动点(点E不与A,C重合),连接BE,将射线EB绕点E逆时针旋转120°后交射线AD于点F.(1)、如图1,当AE=AF时,求∠AEB的度数;(2)、如图2,分别过点B,F作EF,BE的平行线,且两直线相交于点G.
①试探究四边形BGFE的形状,并求出四边形BGFE的周长的最小值;
②连接AG,设CE=x,AG=y,请直接写出y与x之间满足的关系式,不必写出求解过程.
28. 如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)、求点C的坐标及直线BC的函数表达式;(2)、点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.①若∠BDE=45°,求 BDE的面积;
②在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.