湖南省邵阳市2019-2020学年八年级下学期数学期末试卷
试卷更新日期:2020-09-23 类型:期末考试
一、单选题
-
1. 在平面直角坐标系中,点P(-2,3)在( )A、第四象限 B、第三象限 C、第二象限 D、第一象限2. 下列图形中,既是轴对称图形又是中心对称图形的是( )A、 B、 C、 D、3. 函数 中,自变量 的取值范围是( )A、 B、 C、 D、4. 已知一次函数 的函数值 随 的增大而增大,则该函数的图象大致是( )A、 B、 C、 D、5. 为了了解七年级女生的跳绳情况,从中随机抽取了50女生进行1min跳绳测验,得到了这50名女生的跳绳成绩(单位:次),其中最小值为60,最大值为140,若取组距为15,则可分为( )A、7组 B、6组 C、5组 D、4组6. 菱形与矩形都具有的性质是( )A、四条边都相等 B、对角线互相垂直 C、对角线互相平分 D、对角线相等7. 如图,OD平分∠AOB,DE⊥AO于点E,DE=4,点F是射线OB上的任意一点,则DF的长度不可能是( )A、3 B、4 C、5 D、68. 如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,点D,E分别是直角边AC、BC的中点,则DE的长为( )A、1 B、2 C、 D、9. 如图, 过点A(2,0)和点B(0,-1),则方程 解是( )A、 B、 C、 D、10. 古代数学的“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC等于( )尺.A、3.5 B、4 C、4.5 D、5
二、填空题
-
11. 点A(3,-2)关于x轴对称的点的坐标是 .12. 一个n边形的内角和与外角和相等,则n= .13. 已知正比例函数 的图象经过点(m,-6),则m的值为 .14. 为了了解某中学八年级男生的身体发育情况,从该中学八年级男生中随机抽取40名男生的身高进行了测量,已知身高(单位:cm)在1.60~1.65这一小组的频数为6,则身高在1.60~1.65这一小组的频率是 .15. 如图,▱ABCD的一个外角∠CBE是70°,则∠D的大小是 .16. 如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,∠ACD=25°,则∠B的大小是 .17. 如图,四边形 的对角线互相平分,请你添加一个条件,使它成为矩形,你添加的条件是 .18. 如图,正方形A1B1C1A2 , A2B2C2A3 , A3B3C3A4 , …按如图所示的方式放置,点A1 , A2 , A3 , …在直线 上,点B1 , B2 , B3 , …在x轴上。已知点A1是直线 与 轴的交点,则点C2020的纵坐标是 .
三、解答题
-
19. 如图,在平面直角坐标系中,菱形ABCD四个顶点的坐标分别为A(-4,7),B(-6,4),C(-4,1),D(-2,4),先作出菱形ABCD关于 轴对称的图形为菱形A1B1C1D1 , 再将菱形A1B1C1D1向右平移7个单位得到菱形A2B2C2D2 .(1)、请作出菱形A1B1C1D1、菱形A2B2C2D2;(2)、点A2、B2、C2、D2的坐标分别为:A2()、B2()、C2()、D2().20. 如图,将直线 : 向上平移 ( >0)个单位后得到直线 ,直线 经过点P(1,2),与 轴、 轴分别相交于点A、B.(1)、求直线 的函数表达式;(2)、求△AOB的面积.21. 为落实视力保护工作,某校组织七年级学生开展了视力保健活动,活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:
活动前被测查学生视力数据:
根据以上信息回答下列问题:
(1)、图表中a= , b=;(2)、活动前被测查学生视力数据的中位数是 , 活动后被测查学生视力数据的中位数是.(3)、若视力在4.8及以上为达标,则活动前的视力达标率是 , 活动后的视力达标率是;(注:视力达标率是指视力达标的人数占被测查学生人数的百分比)(4)、分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.22. 如图,在▱ABCD中,BE⊥CD,点E为垂足,AF=CE,求证:四边形BEDF是矩形.23. 如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.(1)、求证:BE=FD;(2)、若AC=10,AD=8,求四边形ABCF的面积.24. 某水果店购进苹果若干千克,销售了部分苹果后,余下的苹果进行降价销售,全部售完.销售金额y(元)与销售量x(千克)之间的函数关系的图象是如图所示的折线段.请根据图象提供的信息解答下列问题:(1)、写出降价前y(元)与销售量x(千克)之间的函数表达式;(2)、求降价后销售金额y(元)与销售量x(千克)之间的函数表达式,并写出自变量 的取值范围;(3)、该水果店余下的苹果每千克降价了多少元销售?25. 如图①,在Rt△ABC中,∠ACB=90°,∠A<∠ABC,点D是边AB上的一个动点,过点D作DE⊥AC于点E,点F是射线ED上的点,DF=CB,连接BF、CD,得到四边形BCDF.(1)、求证:四边形BCDF是平行四边形;(2)、若AB=8,∠A=30°,设AD= ,四边形BCDF的面积为 .①求 关于 的函数表达式,并写出自变量 的取值范围;
②试问是否存在这样的点D使四边形BCDF为菱形? 若存在, 请求出 的值; 若不存在, 请说明理由.