初中数学北师大版九年级上学期 第四章 4.6 利用相似三角形测高

试卷更新日期:2020-09-03 类型:同步测试

一、单选题

  • 1. 如图,小明同学用自制的直角三角形纸板 DEF 测量树的高度 AB ,他调整自己的位置,设法使斜边 DF 保持水平,并且边 DE 与点 B 在同一直线上.已知纸板的两条直角边 DE=40cmEF=20cm ,测得边 DF 离地面的高度 AC=1.5mCD=8m ,则树高 AB 是(    )

    A、4米 B、4.5米 C、5米 D、5.5米
  • 2. 身高1.6米的小明同学利用相似三角形测量学校旗杆的高度,上午10点,小明在阳光下的影长为1米,此时测得旗杆的影长为9米,则学校旗杆的高度是(    )
    A、9 B、10 C、13.4 D、14.4
  • 3. 路边有一根电线杆AB和一块长方形广告牌,有一天小明突然发现在太阳光照射下,电线杆顶端A的影子刚好落在长方形广告牌的上边中点G处,而长方形广告牌的影子刚好落在地面上E点(如图),已知BC=5米,长方形广告牌的长HF=4米,高HC=3米,DE=4米,则电线杆AB的高度是(     )

    A、6.75米 B、7.75米 C、8.25米 D、10.75米
  • 4. AB和DE是直立在水平地面上的两根立柱,AB=7米,某一时刻测得在阳光下的投影 BC=4 米,同时,测量出 DE 在阳光下的投影长为6米,则DE的长为(    )
    A、143 B、212 C、247 D、76
  • 5. 某数学活动小组在利用太阳光线测量某棵树 AB 的高度时,发现树 AB 的影子不全落在地面上,有一部分影子落在教学楼的墙壁上.经测量,落在墙壁上影高 CD 为2米,落在地面上的影长 BC 为5米,同一时间测得8米高的国旗杆影长是4米,则树高为(    )

    A、8米 B、10米 C、12米 D、14米
  • 6. 如图,小明为了测量高楼MN的高度,在离N点20米的A处放了一个平面镜,小明沿NA方向后退1.5米到C点,此时从镜子中恰好看到楼顶的M点,已知小明的眼睛(点B)到地面的高度BC是1.6米,则大楼MN的高度(精确到0.1米)约是(   )

    A、18.75米 B、18.8米 C、21.3米 D、19米
  • 7. 《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前。其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(   )

    A、五丈 B、四丈五尺 C、一丈 D、五尺

二、填空题

  • 8. 如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上。在F点观测A点后,沿FN方向走到M点.观测C点发现∠1=∠2。测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为米,BC为米。

  • 9. 小明在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,她的击球高度是2.4米,则她应站在离网的米处。

  • 10. 如图是小玲用手电来测量城墙高度的示意图.在点P处水平放置平面镜,光线从点A出发经平面镜反射后,刚好射到城墙CD的顶端C处.已知AB⊥BD,CD⊥BD,且测得AB=1.4米,BP=2.1米,PD=12米,则该城墙CD的高度米.

三、解答题

  • 11. 为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB′),再把竹竿竖立在地面上,测得竹竿的影长(B′C′)为1.8米,求路灯离地面的高度.

  • 12. 白天,小明和小亮在阳光下散步,小亮对小明说:“咱俩的身高都是已知的.如果量出此时我的影长,那么我就能求出你此时的影长.”晚上,他们二人有在路灯下散步,小明想起白天的事,就对小亮说“如果量出此时我的影长,那么我就能求出你此时的影长”.你认为小明、小亮的说法有道理吗?说说你的理由.
  • 13. 如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通过竹杆的顶端刚好看到塔顶,若小明眼睛离地面1.5m,竹标顶端离地面2.4m,小明到竹杆的距离DF=2m,竹杆到塔底的距离DB=32m,求这座古塔的高度.