湖北省黄石市下陆区2018-2019学年七年级下学期数学期末考试试卷

试卷更新日期:2020-07-15 类型:期末考试

一、选择题

  • 1. 9的算术平方根是(   )
    A、  ﹣3 B、±3 C、3 D、3
  • 2. 点P(m﹣1,m+3)在直角坐标系的y轴上,则P点坐标为(  )
    A、(﹣4,0) B、(0,﹣4) C、(4,0) D、(0,4)
  • 3. 已知 x>y ,则下列不等式成立的是(   )
    A、x1<y1 B、3x<3y C、-x<-y D、x2<y2
  • 4. 如图,将长方形纸条 ABCD 沿 EF 叠后, EDBF 交于 G 点,若 EFC= 130° ,则 AED 的度数为(   )

    A、55 B、70 C、75 D、80
  • 5. 如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四辺形ABFD的周长为( )

    A、16cm B、18cm C、20cm D、22cm
  • 6. 若方程组 {3x+2y=a+42x+3y=a 的解x与y的和为2,则a的值为(  )
    A、7 B、3 C、0 D、3
  • 7. 若一元一次不等式组 {x7x1m 有解,则 m 的取值范围是(   )
    A、m>6 B、m6 C、m<7 D、m6
  • 8. 某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要 保持利润不低于10%,那么至多打(  )
    A、6折 B、7折 C、8折 D、9折
  • 9. 如图, 已知 AB//CDEBF= 2ABE EDF= 2CDE ,则 EF 之间满足的数量关系是( )

    A、E=F B、E+F=180 C、3E+F=360 D、2EF=90
  • 10. 一个质点在第一象限及 x 轴、 y 轴上运动, 在第一秒钟,它从原点运动到 (01) ,然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第 80 秒时质点所在位置的坐标是( )

    A、(09) B、(90) C、(08) D、(80)

二、填空题

  • 11. 要使 x4 有意义,则x的取值范围是
  • 12. 为了调查滨湖区八年级学生期末考试数学试卷答题情况,从全区的数学试卷中随机抽取了10本没拆封的试卷作为样本,每本含试卷30份,这次抽样调查的样本容量是
  • 13. 若a是 5 的整数部分,b是它的小数部分,则a+b= .
  • 14. 已知点 A(1,2)AC//x 轴, AC=5 ,则点C的坐标是 .
  • 15. 小明在拼图时,发现 8 个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为 5mm 的小正方形,则每个小长方形的面积为 mm2 .

  • 16. 若不等式组 {x<1x>m2 恰有两个整数解,则m的取值范围是

三、解答题

  • 17. 计算
    (1)、4+|2|+273+(1)2016
    (2)、83+|32|+(3)2(3)
  • 18. 用适当的方法解方程组
    (1)、{x=3y3x+2y=2  
    (2)、{3x5y=3x2y3=1
  • 19. 解不等式组 {2x+111+2x3>x1 ,并把不等式组的解集在数轴上表示出来.
  • 20. 已知:如图, AD//BE1=2 ,求证: A=E .

  • 21. 已知关于 xy 的方程组 {x+y=m7xy=3m+1 的解满足 x0, y< 0 .
    (1)、求 m 的取值范围:
    (2)、在 m 的取值范围内,当 m 为何整数时,不等式 2mx+x< 2m + 1 的解为 x>1 ?
  • 22. 某校为了了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下的统计图,请你结合图中所给的信息解答下列问题:

    (说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)

    (1)、请把条形统计图补充完整;
    (2)、扇形统计图中D级所在的扇形的圆心角度数是
    (3)、若该校七年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?
  • 23. 为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
    (1)、求购买A型和B型公交车每辆各需多少万元?
    (2)、预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
    (3)、在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
  • 24. 如图,在下面直角坐标系中,已知 A(44) B(80)

    (1)、求 ΔABO 的面积
    (2)、若以点 ABO 为顶点画平行四边形,则请你“利用平移的知识”直接写出符合条件的所有的平行四边形的第四个顶点 C 的坐标
    (3)、是否存在 x 轴上的点 M(x0) ,使 ΔABM 的面积是 ΔABO 的面积的 2 倍,若存在,求出点 M 的坐标;若不存在,请说明理由.
  • 25. 如图1, C 点是第二象限内一点, CB  y 轴于 B ,且 B(0b)y 轴正半轴上一点, A(a0) 是x轴负半 x 轴上一点,且 |a+2|+(b3)2=0 SAOBC=9 .

    (1)、A), B
    (2)、如图2,设 D 为线段 OB 上一动点,当 ADAC 时, ODA 的角平分线与 CAE 的角平分线的反向延长线交于点 P ,求 APD 的度数: (注: 三角形三个内角的和为 180 )
    (3)、如图3,当 D 点在线段 OB 上运动时,作 DMADCBMBMDDAO 的平分线交于 N ,当 D 点在运动的过程中, N 的大小是否变化?若不变,求出其值;若变化,请说明理由.