浙江省杭州市2020年数学中考模拟试卷(5月)
试卷更新日期:2020-07-07 类型:中考模拟
一、选择题(每题3分,满分30分)
-
1. 的相反数是( )A、 B、 C、 D、2. 已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为( )A、点在圆内 B、点在圆上 C、点在圆外 D、不能确定3. 已知2x=3y,则下列比例式成立的是( )A、 B、 C、 D、4. 把抛物线y=x2向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为( )A、y=(x+3)2+1 B、y=(x+3)2﹣1 C、y=(x﹣1)2+3 D、y=(x+1)2+35. 在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为 ,则放入的黄球个数?=( )A、4 B、5 C、6 D、76. 如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为( )A、1 B、1.2 C、2 D、2.57. 如图,AB是⊙O的直径,点C在⊙O上,CD平分∠ACB交⊙O于点D,若∠ABC=30°,则∠CAD的度数为( )A、100° B、105° C、110° D、120°8. 已知反比例函数y= 的图象在每一个象限内,y随x的增大而增大,那么一次函数y=kx+2的大致图象是( )A、 B、 C、 D、9. 如图,△ABC是等边三角形,AD是BC边上的高,点E是AC边的中点,点P是AD上的一个动点,当PC+PE最小时,∠CPE的度数是( )A、30° B、45° C、60° D、90°10. 已知关于n的函数s=an2+bn(n为自然数),当n=9时,s<0;当n=10时,s>0.则n取( )时,s的值最小.A、3 B、4 C、5 D、6
二、填空题(满分18分,每小题3分)
-
11. 已知∠A为锐角,且tanA= ,则∠A的大小为.12. 如果点P是线段AB的黄金分割点(AP>BP),那么 的值是.13. 把ab2﹣ab分解因式的结果是.14. 如图,在半径为 ,圆心角等于45°的扇形AOB内部作一个矩形CDEF,使点C在OA上,点D、E在OB上,点F在弧AB上,且DE=2CD,则:(1)、弧AB的长是(结果保留π);(2)、图中阴影部分的面积为(结果保留π).15. 如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.16. 如图,在矩形ABCD的边AB上有一点E,且 ,DA边上有一点F,且EF=18,将矩形沿EF对折,A落在边BC上的点G,则AB=.
三、解答题
-
17. 先化简,再求值:(x﹣2+ )÷ ,其中x= .18. 一次安全知识测验中,学生得分均为整数,满分10分,成绩达到9分为优秀,这次测验中甲、乙两组学生人数相同,成绩如下两个统计图:(1)、在乙组学生成绩统计图中,8分所在的扇形的圆心角为度;(2)、请补充完整下面的成绩统计分析表:
平均分
方差
众数
中位数
优秀率
甲组
7
1.8
7
7
20%
乙组
1.36
10%
(3)、你认为哪组的成绩较好?从以上信息中写出两条支持你的选择.(4)、从甲乙两组得9分的学生中抽取两人参加市级比赛,求这两人来自不同组的概率.19. 某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P . 在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)
20. 甲乙两位老师同住一小区,该小区与学校相距2000米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,骑行若干米到达还车点后,立即步行走到学校.已知乙骑车的速度为170米/分,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给的信息,解答下列问题:
(1)、求甲步行的速度和乙出发时甲离开小区的路程;(2)、求直线BC的解析式;(3)、在图2中,画出当20≤x≤25时,s关于x的函数的大致图象.21. 如图,在⊙O中,AB是直径,BC是弦,BC=BD,连接CD交⊙O于点E,∠BCD=∠DBE.(1)、求证:BD是⊙O的切线.(2)、过点E作EF⊥AB于F,交BC于G,已知DE= ,EG=3,求BG的长.