浙江省衢州地区2018-2019学年八年级下学期数学期末考试试卷

试卷更新日期:2020-06-15 类型:期末考试

一、选择题

  • 1. 中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是(   )
    A、 B、 C、 D、
  • 2. 根据《九章算术》的记载中国人最早使用负数,下列四个数中的负数是(   )
    A、|2| B、(2)2 C、2 D、(2)2
  • 3. 我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是(    ).
    A、28,28 B、28,29 C、29,28 D、29,29
  • 4. 矩形的边长是 4cm ,一条对角线的长是 43cm ,则矩形的面积是(   )
    A、32cm2 B、322cm2 C、162cm2 . D、83cm2
  • 5. 若 x22px+3q=0 的两根分别是 3 与5,则多项式 2x24px+6q 可以分解为(   )
    A、(x+3)(x5) B、(x3)(x+5) C、2(x+3)(x5) D、2(x3)(x+5)
  • 6. 如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是(   )

    A、AB=CD B、AD∥BC C、OA=OC D、AD=BC
  • 7. 随着人民生活水平的提高,中国春节已经成为中国公民旅游黄金周.国家旅游局数据显示,2017年春节中国公民出境旅游约615万人次,2018,2019两年出境旅游人数持续增长,在2019年春节出境旅游达到700万人次,设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为x,则下列方程正确的是(   ).
    A、615(1+x)=700 B、615(1+2x)=700 C、615(1+x)2=700 D、615(1+x)+615(1+x)2=700
  • 8. 如图,在六边形 ABCDEF 中, A+B+E+F=αCPDP 分别平分 BCDCDE ,则 P 的度数为(   )

    A、12α180 B、18012α C、12α D、36012α
  • 9. 如图,将边长为 3 的正方形绕点B逆时针旋转30°,那么图中点M的坐标为(   )

    A、3 ,1) B、(1, 3 C、332 D、323
  • 10. 已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线 y=kx ( x >0)经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为(   ).

    A、(3,8) B、(12, 83 C、(4,8) D、(12,4)

二、填空题

  • 11. 计算: 312+13= .
  • 12. 用反证法证明“等腰三角形的底角是锐角”时,首先应假设
  • 13. 如图,在菱形ABCD中,点E是AD的中点,对角线AC,BD交于点F,若菱形ABCD的周长是24,则EF=.

  • 14. 如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为.
  • 15. 若 s2=14[(3.2x¯)2+(5.7x¯)2+(4.3x¯)2+(6.8x¯)2] 是李华同学在求一组数据的方差时,写出的计算过程,则其中的 x¯ =.
  • 16. 已知点A(a,b)是一次函数 y=x+3 的图象与反比例函数 y=1x 的图象的一个交点,则 1a+1b =.
  • 17. 如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.

  • 18. 如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y= kx (k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为.

三、解答题

  • 19.     
    (1)、27131812
    (2)、212×34÷52
  • 20. 解方程:
    (1)、(2x+3)281=0
    (2)、x24x5=0
  • 21. 如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB//DC,AC=10,BD=8.

    (1)、求证:四边形ABCD是平行四边形;
    (2)、若AC⊥BD,求平行四边形ABCD的面积.
  • 22. 某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:

    (1)、根据图示填写下表

    班级

    中位数(分)

    众数(分)

    平均数(分)

    一班

    85

    二班

    100

    85

     

    (2)、结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?
    (3)、已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?
  • 23. 已知:如图,在▱ABCD中,AD=4,AB=8,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于点G.

    (1)、求证:△ADE≌△CBF;
    (2)、若四边形BEDF是菱形,求四边形AGBD的面积.
  • 24.
    如图,已知点A的坐标为(a,4)(其中a<-3),射线OA与反比例函数y=-12x 的图象 交于点P,点B,C分别在函数y=-12x 的图象上,且AB∥x轴,AC∥y轴,连结BO,CO,BP,CP.
     

    (1)、当a=-6,求线段AC的长;
    (2)、当AB=BO时,求点A的坐标;
    (3)、求证: SABPSACP=1 .