云南省红河州蒙自市2020年数学中考一模试卷

试卷更新日期:2020-06-09 类型:中考模拟

一、填空题

  • 1. - 2020的倒数是
  • 2. 截至2020年3月11日09时,全国累计报告确诊COVID-19病例80955例,累计死亡病例3162例,累计治愈出院61567例. 将数据80955用科学记数法表示为.
  • 3. 分解因式:x2﹣9x=
  • 4. 如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是cm

  • 5. 在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为 .

  • 6. 如图,将正整数的算术平方根按如图所示的规律排列下去.若用有序实数对(m,n)表示第m排,从左到右第n个数,如(4,3)表示实数3,则(8,6)表示的实数是.

二、选择题

  • 7. 剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是(    )
    A、 B、 C、 D、
  • 8. 某篮球运动员在连续7场比赛中的得分(单位:分)依次为21,16,17,23,20,20,23,则这组数据的平均数与中位数分别是( )
    A、20分,17分 B、20分,22分 C、20分,19分 D、20分,20分
  • 9. 下列运算正确的是(   )
    A、(a3)2=a29 B、a2a4=a8 C、9=±3 D、83=2
  • 10. 若 x+2 在实数范围内有意义,则x的取值范围在数轴上表示正确的是(   )
    A、 B、 C、 D、
  • 11. 关于 x 的方程 kx2+3x1=0 有实数根,则k的取值范围是(   )
    A、k94 B、k94k0 C、k94 D、k94k0
  • 12. 如图,已知A为反比例函数 y=kxx <0)的图像上一点,过点A作AB⊥ y 轴,垂足为B.若△OAB的面积为2,则k的值为(   )

    A、2 B、-2 C、4 D、-4
  • 13. “绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是(   )
    A、60x60(1+25%)x=30 B、60(1+25%)x60x=30 C、60×(1+25%)x60x=30 D、60x60×(1+25%)x=30
  • 14. 如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°, ②OC=OE, ③tan∠OCD = 43 ,④ SΔODC=SBEOF 中,正确的有( )

    A、1个 B、2个 C、3个 D、4个

三、解答题

  • 15. 计算: (2020)0|2|+(13)1+2sin45 .
  • 16. 如图,点A、E、B、D在同一条直线上,AE=BD,AC=DF,AC∥DF.求证:BC∥EF.

  • 17. 如图,已知△ABC 的顶点分别为 A(-2,2)、B(-4,5)、C(-5,1)和直线 m (直线 m 上各点的横坐标都为 1).

    ①作出△ABC 关于 x 轴对称的图形△A1B1C1 , 并写出点 A1 的坐标;

    ②作出点 C关于直线 m 对称的点C2 , 并写出点C2 的坐标;

    ③在 x 轴上找一点P,使 PA+PC的值最小,请直接写出点P的坐标.

  • 18. 随着智能手机的普及率越来越高以及移动支付的快捷高效性,中国移动支付在世界处于领先水平.为了解人们平时最喜欢用哪种移动支付方式,因此在某步行街对行人进行随机抽样调查,以下是根据调查结果分别整理的不完整的统计表和统计图.

    移动支付方式

    支付宝

    微信

    其他

    人数/人

           

    200

    75

    请你根据上述统计表和统计图提供的信息.完成下列问题:

    (1)、在此次调查中,使用支付宝支付的人数;
    (2)、求表示微信支付的扇形所对的圆心角度数;
    (3)、某天该步行街人流量为10万人,其中30%的人购物并选择移动支付,请你依据此次调查获得的信息估计一下当天使用微信支付的人数.
  • 19. 在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.

    (1)、转动转盘①时,该转盘指针指向歌曲“3”的概率是
    (2)、若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.
  • 20. 如图,在矩形ABCD中,AB=16,AD=12,点E、F分别在边CD、AB上.

    (1)、若DE=BF,求证:四边形AFCE是平行四边形;
    (2)、若四边形AFCE是菱形,求菱形AFCE的周长.
  • 21. 某网店专售一款电动牙刷,其成本为20元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.

    (1)、请求出y与x的函数关系式;
    (2)、该款电动牙刷销售单价定为多少元时,每天销售利润最大?最大利润是多少元?
    (3)、近期武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出 200 元捐赠给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定该款电动牙刷的售单价?
  • 22. 如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.

    (1)、试判断FG与⊙O的位置关系,并说明理由.
    (2)、若AC=3,CD=2.5,求FG的长.
  • 23. 如图1,在△ABC中,AB=AC=20,tanB= 34 ,点D为BC边上的动点(D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.

    (1)、求证:△ABD∽△DCE;
    (2)、当DE∥AB时(如图2),求AE的长;
    (3)、点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.