人教版数学八年级上册第14章 14.2.1平方差公式 同步练习
试卷更新日期:2017-08-23 类型:同步测试
一、单选题
-
1. 下列运用平方差公式计算,错误的是( )A、(a+b)(a﹣b)=a2﹣b2 B、(x+1)(x﹣1)=x2﹣1 C、(2x+1)(2x﹣1)=2x2﹣1 D、(﹣3x+2)(﹣3x﹣2)=9x2﹣42. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a>0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为( )A、(2a2+5a)cm2 B、(3a+15)cm2 C、(6a+9)cm2 D、(6a+15)cm23. 下列计算正确的是( )A、(x+y)2=x2+y2 B、(x﹣y)2=x2﹣2xy﹣y2 C、(x+1)(x﹣1)=x2﹣1 D、(x﹣1)2=x2﹣14. 若|x+y﹣5|+(x﹣y﹣3)2=0,则x2﹣y2的结果是( )A、2 B、8 C、15 D、165. 化简(m2+1)(m+1)(m﹣1)﹣(m4+1)的值是( )A、﹣2m2 B、0 C、﹣1 D、﹣26. 下列各式能用平方差公式计算的是( )A、(﹣3a﹣b)(﹣3a+b) B、(3a+b)(a﹣b) C、(3a+b)(﹣3a﹣b) D、(﹣3a+b)(3a﹣b)7.
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )
A、(a+b)2=a2+2ab+b2 B、(a﹣b)2=a2﹣2ab+b2 C、a2﹣b2=(a+b)(a﹣b) D、(a+2b)(a﹣b)=a2+ab﹣2b28. 下列变形正确的是( )A、(﹣3a3)2=﹣9a5 B、2x2y﹣2xy2=0 C、﹣ ÷2ab=﹣ D、(2x+y)(x﹣2y)=2x2﹣2y29. 计算(a﹣2)(﹣a﹣2)的结果正确的是( )A、a2﹣4 B、a2﹣4a+4 C、4﹣a2 D、2﹣a210. 下列各式正确的是( )A、(a+b)2=a2+b2 B、(x+6)(x﹣6)=x2﹣6 C、(x+2)2=x2+2x+4 D、(x﹣y)2=(y﹣x)211. 下列计算正确的是( )A、(2x﹣3)2=4x2+12x﹣9 B、(4x+1)2=16x2+8x+1 C、(a+b)(a﹣b)=a2+b2 D、(2m+3)(2m﹣3)=4m2﹣312. 下列多项式中,可以用平方差公式分解因式的是 ( )A、 B、 C、 D、二、填空题
-
13. 计算:( +1)( ﹣1)= .14. 若a2﹣b2= ,a﹣b= ,则a+b的值为 .15.
如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式 .
16. 如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 .三、计算题
-
17. 化简:(x+y)(x﹣y)﹣(2x﹣y)(x+3y)18. 计算(1)、(π﹣2013)0﹣( )﹣2+|﹣4|(2)、4(a+2)(a+1)﹣7(a+3)(a﹣3)
四、综合题
-
19. 化简:(1)、﹣(a2﹣b)2+(2a+b)(﹣2a+b);(2)、 ÷(m﹣1﹣ ).20. 从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)、上述操作能验证的等式是 (填A或B)A、a2﹣2ab+b2=(a﹣b)2 B、a2﹣b2=(a+b)(a﹣b)(2)、应用你从(1)中选出的等式,计算:
(1﹣ )(1﹣ )(1﹣ )…(1﹣ )(1﹣ ).
21. 如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如:16=52﹣32 , 16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索:
小明的方法是一个一个找出来的:
0=02﹣02 , 1=12﹣02 , 3=22﹣12 ,
4=22﹣02 , 5=32﹣22 , 7=42﹣32 ,
8=32﹣12 , 9=52﹣42 , 11=62﹣52 , …
小王认为小明的方法太麻烦,他想到:
设k是自然数,由于(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1.
所以,自然数中所有奇数都是智慧数.
问题:
(1)、根据上述方法,自然数中第12个智慧数是;(2)、他们发现0,4,8是智慧数,由此猜测4k(k≥3且k为正整数)都是智慧数,请你参考小王的办法证明4k(k≥3且k为正整数)都是智慧数.(3)、他们还发现2,6,10都不是智慧数,由此猜测4k+2(k为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由.