河南省信阳市息县2020届九年级上学期数学期末考试试卷
试卷更新日期:2020-03-11 类型:期末考试
一、单选题
-
1. 下列图形中,既是中心对称图形又是轴对称图形的是( )A、 B、 C、 D、2. 下列事件中,为必然事件的是( )A、抛掷10枚质地均匀的硬币,5枚正面朝上 B、某种彩票的中奖概率为 ,那么买100张这种彩票会有10张中奖 C、抛掷一枚质地均匀的骰子,朝上一面的数字不大于6 D、打开电视机,正在播放戏曲节目3. 不解方程,则一元二次方程 的根的情况是( )A、有两个相等的实数根 B、没有实数根 C、有两个不相等的实数根 D、以上都不对4. 若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A、y=2(x﹣1)2﹣3 B、y=2(x﹣1)2+3 C、y=2(x+1)2﹣3 D、y=2(x+1)2+35. 如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为( )A、110° B、140° C、35° D、130°6. 如图,已知 点是反比例函数 的图象上一点, 轴于 ,且 的面积为3,则 的值为( )A、4 B、5 C、6 D、77. 在正方形网格中△ABC的位置如图所示,则cos∠B的值为( )A、 B、 C、 D、8. 向上发射一枚炮弹,经 秒后的高度为 ,且时间与高度的关系式为 ,若此时炮弹在第 秒与第 秒时的高度相等,则在下列哪一个时间的高度是最高的( )A、第 秒 B、第 秒 C、第 秒 D、第 秒9. 如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )A、4 B、4 C、6 D、410. 如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有( )A、4个 B、3个 C、2个 D、1个
二、填空题
-
11. 已知关于x的一元二次方程(a-1)x2-x + a2-1=0的一个根是0,那么a的值为.12. 把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为.13. 若点 , 在反比例函数 的图象上,则 .(填“>”“<”或“=”)14. 如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为 ,则 ( )的值为.15. 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是 .
三、解答题
-
16. 体育课上,小明、小强、小华三人在足球场上练习足球传球,足球从一个人传到另个人记为踢一次.如果从小强开始踢,请你用列表法或画树状图法解决下列问题:(1)、经过两次踢球后,足球踢到小华处的概率是多少?(2)、经过三次踢球后,足球踢回到小强处的概率是多少?17. 如图,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)、画出旋转后的△A1OB1 , 点A1的坐标为 ;(2)、在旋转过程中,点B经过的路径的长.18. 如图,反比例函数 的图象与一次函数 的图象相交于点 和点 .(1)、求反比例函数的解析式和点 的坐标;(2)、连接 , ,求 的面积.(3)、结合图象,请直接写出使反比例函数值小于一次函数值的自变量 的取值范围.19. 如图,某中学九年级“智慧之星”数学社团的成员利用周末开展课外实践活动,他们要测量中心公园内的人工湖中的两个小岛 , 间的距离.借助人工湖旁的小山,某同学从山顶 处测得观看湖中小岛 的俯角为 ,观看湖中小岛 的俯角为 .已知小山 的高为180米,求小岛 , 间的距离.20. 如图,已知直线 交⊙ 于 、 两点, 是⊙ 的直径,点 为⊙ 上一点,且 平分 ,过点 作 于 .(1)、求证: 为⊙ 的切线.(2)、若 ,且⊙ 是直径为 ,求 的长.21. 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调査发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)、求平均每天销售量 (箱)与销售价 (元/箱)之间的函数关系式.(2)、求该批发商平均每天的销售利润 (元)与销售价 (元/箱)之间的函数关系式.(3)、当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22. 如图①,在 与 中, , .(1)、 与 的数量关系是: .(2)、把图①中的 绕点 旋转一定的角度,得到如图②所示的图形.
①求证: .
②若延长 交 于点 ,则 与 的数量关系是什么?并说明理由.
(3)、若 , ,把图①中的 绕点 顺时针旋转 ,直接写出 长度的取值范围.23. 如图,在平面直角坐标系中,抛物线 交 轴于点 ,交 轴正半轴于点 ,与过 点的直线相交于另一点 ,过点 作 轴,垂足为 .(1)、求抛物线的解析式.(2)、点 是 轴正半轴上的一个动点,过点 作 轴,交直线 于点 ,交抛物线于点 .①若点 在线段 上(不与点 , 重合),连接 ,求 面积的最大值.
②设 的长为 ,是否存在 ,使以点 , , , 为顶点的四边形是平行四边形?若存在,求出 的值;若不存在,请说明理由.