河南省三门峡市2019-2020学年七年级上学期数学期末考试试卷

试卷更新日期:2020-02-17 类型:期末考试

一、单选题

  • 1. 若 (m2)x|2m3|=6 是一元一次方程,则 x 等于(   ).
    A、1 B、2 C、1或2 D、任何数
  • 2. 关于x的方程3x+5=0与3x+3k=1的解相同,则k=(    )
    A、﹣2 B、43 C、2 D、43
  • 3. 解方程 2x+1310x+16=1 时,去分母正确的是(  )
    A、2x+1﹣(10x+1)=1 B、4x+1﹣10x+1=6 C、4x+2﹣10x﹣1=6 D、2(2x+1)﹣(10x+1)=1
  • 4. 已知 x+y+2(xy+1)=3(1yx)4(y+x1) ,则 x+y 等于(   ).
    A、65 B、65 C、56 D、56
  • 5. 在有理数范围内定义运算“*”,其规则为a*b= 2a+b3 ,则方程(2*3)(4*x)=49的解为(  )
    A、﹣3 B、﹣55 C、﹣56 D、55
  • 6. 方程2y﹣ 1212 y﹣ 中被阴影盖住的是一个常数,此方程的解是y=﹣ 53 .这个常数应是( )
    A、1 B、2 C、3 D、4
  • 7. x 是一个两位数, y 是一个三位数,把 x 放在 y 的左边构成一个五位数,则这个五位数的表达式是(    )
    A、xy B、10x+y C、100x+1000y D、1000x+y
  • 8. 某竞赛试卷由26道题组成,答对一题得8分,答错一题倒扣5分,小强虽然做了全部的26道题,但所得总分为零,他答对的题有(    )
    A、10道 B、15道 C、20道 D、8道
  • 9. 设P=2y-2,Q=2y+3,且3P-Q=1,则y的值是(    )                             
    A、0.4 B、2.5 C、-0.4 D、-2.5
  • 10. 某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他(  )

    A、不赚不赔 B、赚9元 C、赔18元 D、赚18元

二、填空题

  • 11. 在方程① x2=3x ,② 0.3y=1 ,③ x25x+6=0 ,④ x=0 ,⑤ 6xy=9 ,⑥ 2x+13=16x 中,是一元一次方程的有 .(填序号)
  • 12. 当x=时,式子 2x+56x+114+x 的值互为相反数.
  • 13. 若(a﹣2)xa+3+2=0是关于x的一元一次方程,则a= , 方程的解是
  • 14. 若a、b互为相反数,c、d互为倒数,p的绝对值等于2,则关于x的方程 (a+b)x2+3cdxp2=x 的解为.
  • 15. 某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是

三、解答题

  • 16. 解下列方程.
    (1)、2(x﹣2)﹣3(4x﹣1)=9(1﹣x);
    (2)、2x135x+26=12x22
    (3)、x25x+116=1+2x43
    (4)、3+0.2x0.20.2+0.03x0.01=0.75
  • 17. x等于什么数时,代数式 3x23 的值比 4x14 的值的2倍小1?
  • 18. 已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程 3my3=m3x2 的解.
  • 19. 方程 x2 ﹣3= 14 的根,比关于x的方程2﹣ 13 (a﹣x)=2x的根的2倍还多4.5,求关于x的方程a(x﹣5)﹣2=a(2x﹣3)的解.
  • 20. 某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?
  • 21. 甲、乙两工程队开挖一条水渠各需 10 天、15 天,两队合作2 天后,甲有其他任务,由乙队单独做。完成这项工程共需多少天?
  • 22. 轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距多少千米.
  • 23. 在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:

     

    功率

    使用寿命

    价格

    普通白帜灯

    100瓦(即0.1千瓦)

    2000小时

    3元/盏

    优质节能灯

    20瓦(即0.02千瓦)

    4000小时

    35元/盏

    已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.

    (注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)

    请你解决以下问题:

    (1)、如果选用一盏普通白炽灯照明1000小时,那么它的费用是多少?
    (2)、在白炽灯的使用寿命内,设照明时间为x小时,请用含x的式子分别表示用一盏白炽灯的费用和一盏节能灯的费用;
    (3)、照明多少小时时,使用这两种灯的费用相等?
    (4)、如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.