2017年浙江中考真题分类汇编(数学):专题08 三角形
试卷更新日期:2017-08-10 类型:二轮复习
一、单选题
-
1. 下列各组数中,不可能成为一个三角形三边长的是( )
A、2,3,4 B、5,7,7 C、5,6,12 D、6,8,102.如图,已知△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A、AE=EC B、AE=BE C、∠EBC=∠BAC D、∠EBC=∠ABE3.如图,在△ABC中,点D,E分别在边AB,AC上,DE//BC,若BD=2AD,则( )
A、 B、 C、 D、4.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则( )
A、x﹣y2=3 B、2x﹣y2=9 C、3x﹣y2=15 D、4x﹣y2=21二、填空题
-
5.
如图,正△ABO的边长为2,O为坐标原点,A在 轴上,B在第二象限。△ABO沿 轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是;翻滚2017次后AB中点M经过的路径长为.
6.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.
7.一副含 和 角的三角板 和 叠合在一起,边 与 重合, (如图1),点 为边 的中点,边 与 相交于点 .现将三角板 绕点 按顺时针方向旋转(如图2),在 从 到 的变化过程中,点 相应移动的路径长为 . (结果保留根号)
8.如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于 .
三、解答题
-
9.
问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。
类比研究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。
(1)、△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)、△DEF是否为正三角形?请说明理由;(3)、进一步探究发现,△ABD的三边存在一定的等量关系,设 , , ,请探索 , , 满足的等量关系。10.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.
(1)、如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°.②求α,β之间的关系式.
(2)、是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.11.如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径
(1)、求证:△APE是等腰直角三角形;(2)、若⊙O的直径为2,求 的值