吉林省重点高中2019-2020学年高三上学期理数第二次月考试卷
试卷更新日期:2020-01-10 类型:月考试卷
一、单选题
-
1. 已知全集 ,若 , ,则 ( )A、 B、 C、 D、2. “ , ”的否定是A、 , B、 , C、 , D、 ,3. 若角 的终边过点 ,则 的值是A、 B、 C、 D、4. 已知某扇形的面积为 ,若该扇形的半径 ,弧长 满足 ,则该扇形圆心角大小的弧度数是( )A、 B、 C、 D、 或5. 函数 的一个零点所在区间为( )A、 B、 C、 D、6. 如图,若 , , , 是线段 靠近点 的一个四等分点,则下列等式成立的是( )A、 B、 C、 D、7. 若 ,且 为第三象限角,则 的值等于( )A、 B、 C、 D、8. 若函数 的图象与直线 一个交点的坐标为 ,则 ( )A、 B、1 C、 D、无法确定9. 已知在矩形 中, , ,若 , 分别为 , 的中点,则 ( )A、 B、 C、 D、10. 已知 中,角 的对边分别为 , , , ,则 外接圆的面积为( )A、 B、 C、 D、11. 一艘轮船从A出发,沿南偏东 的方向航行40海里后到达海岛B,然后从B出发,沿北偏东35°的方向航行了 海里到达海岛C.如果下次航行直接从A出发到C,此船航行的方向和路程(海里)分别为( )A、北偏东 , B、北偏东 , C、北偏东 , D、北偏东 ,12. 若函数 在区间 上有两个不同的零点,则实数 的取值范围是( )A、 B、 C、 D、
二、填空题
-
13. 若 , ,则 .14. 已知平面向量 , ,若 ,则实数 .15. 化简: .16. 已知奇函数 在定义域 上单调递增,若 对任意的 成立,则实数 的最小值为 .
三、解答题
-
17. 已知 ,求下列各式的值:(1)、 ;(2)、 .18. 已知函数 .(1)、求函数 的单调递增区间;(2)、当 时,求函数 的最小值.19. 已知平面向量 ,(1)、若 , ,求实数x的值;(2)、求函数 的单调递减区间.