2017年江西省抚州市临川三中高考数学三模试卷(文科)
试卷更新日期:2017-07-30 类型:高考模拟
一、选择题
-
1. 已知R为实数集,集合A={x|x2﹣2x≥0},B={x|x>1},则(∁RA)∩B( )A、(0,1) B、(0,1] C、(1,2) D、(1,2]2. 设i是虚数单位,复数 为实数,则实数a的值为( )A、1 B、2 C、3 D、43. 函数f(x)=2x+x的零点所在的区间为( )A、(﹣2,﹣1) B、(﹣1,0) C、(0,1) D、(1,2)4. 已知函数f(x)=sinx﹣cosx,且f′(x)=2f(x),则tan2x的值是( )A、﹣ B、 C、﹣ D、5. 在两个变量y与x的回归模型中,分别选择了四个不同的模型,它们的相关指数R2如下,其中拟合效果最好的为( )A、模型①的相关指数为0.976 B、模型②的相关指数为0.776 C、模型③的相关指数为0.076 D、模型④的相关指数为0.3516. 已知在等比数列{an}中,a1=1,a5=9,则a3=( )A、±5 B、5 C、±3 D、37. 若函数 在(﹣∞,+∞)上单调递增,则的取值范围是( )A、[4,8) B、(1,+∞) C、(4,8) D、(1,8)8. 某几何体的三视图如图所示,且该几何体的体积是 ,则正视图中的x的值是( )A、 B、 C、2 D、39. 设z=x+y,其中实数x,y满足 ,若z的最大值为6,则z的最小值为( )A、﹣3 B、﹣2 C、﹣1 D、010. 我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式anxn+an﹣1xn﹣1+…+a1x+a0 , 当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后进行求值.运行如图所示的程序框图,能求得多项式( )的值.A、x4+x3+2x2+3x+4 B、x4+2x3+3x2+4x+5 C、x3+x2+2x+3 D、x3+2x2+3x+411. 函数f(x)=x3+x,x∈R,当 时,f(msinθ)+f(1﹣m)>0恒成立,则实数m的取值范围是( )A、(0,1) B、(﹣∞,0) C、 D、(﹣∞,1)12. 已知圆(x﹣1)2+y2= 的一条切线y=kx与双曲线C: ﹣ =1(a>0,b>0)有两个交点,则双曲线C的离心率的取值范围是( )A、(1, ) B、(1,2) C、( ,+∞) D、(2,+∞)
二、填空题
-
13. 已知平面向量 =(1,2), =(﹣2,m),且| + |=| ﹣ |,则| +2 |= .14. 如图所示是某市2017年4月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天.
该同志到达当日空气质量重度污染的概率 .
15. 在平面直角坐标系xOy中,点P是直线3x+4y+3=0上的动点,过点P作圆C:x2+y2﹣2x﹣2y+1=0的两条切线,切点分别是A,B,则|AB|的取值范围为 .16. 设点P(x,y)是曲线a|x|+b|y|=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足 ,则 a+b取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.
-
17. 已知数列{an}是各项均为正数的等差数列,其中a1=1,且a2、a4、a6+2成等比数列;数列{bn}的前n项和为Sn , 满足2Sn+bn=1(1)、求数列{an}、{bn}的通项公式;(2)、如果cn=anbn , 设数列{cn}的前n项和为Tn , 求证:Tn<Sn+ .18. 4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)、求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
非读书迷
读书迷
合计
男
15
女
45
合计
(2)、根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?附:K2= n=a+b+c+d
P(K2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
19. 如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.
20. 平面直角坐标系xOy中,椭圆C1: + =1(a>b>0)的离心率为 ,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.(1)、求椭圆的方程;(2)、A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.21. 已知函数f(x)= ﹣alnx,其中a>0,x>0,e是自然对数的底数.(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数g(x)= ,证明:0<g(x)<1.