重庆市江北区2018-2019学年八年级上学期期末联考试卷
试卷更新日期:2019-12-13 类型:期末考试
一、单选题
-
1. 下列图形中,是轴对称图形的是( )A、 B、 C、 D、2. 计算 正确的结果是( )A、 B、 C、 D、3. 如果把分式中的x和y都扩大2倍,则分式的值( )A、扩大4倍 B、扩大2倍 C、不变 D、缩小2倍4. 二次根式 中, 的取值范围是( )A、 B、 C、 D、5. 已知等腰三角形两边长分别为 , ,则这个三角形的周长是( )A、 B、 C、 或 D、6. 估计 的值应在( )A、 和 之间 B、 和 之间 C、 和 之间 D、 和 之间7. 下列各式分解因式正确的是( )A、 B、 C、 D、8. 如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是( )A、AC=EF B、BC=DF C、AB=DE D、∠B=∠E9. 如图, 平分 交 于点 , 平分 交 于点 ,若 , ,则 的度数为( )A、 B、 C、 D、10. 光明家具厂生产一批学生课椅,计划在 天内完成并交付使用.若每天多生产 把,则 天完成且还多生产 把.设原计划每天生产 把,根据题意,可列分式方程为( )A、 B、 C、 D、11. 下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有 颗棋子,第②个图形一共有 颗棋子,第③个图形一共有 颗棋子, ,则第⑩个图形中棋子的颗数为( )A、 B、 C、 D、12. 从 , , , , , 这六个数中,随机抽取一个数,记为 .关于 的方程 的解是正数,那么这 个数中所有满足条件的 的值有( )个.A、 B、 C、 D、
二、填空题
-
13. 若 , ,则 .14. 若分式 的值为零,则x= .15. 在等腰 中,一腰上的高与另一腰的夹角为 ,则底角的度数为 .16. 如图, 中, , , 的垂直平分线交 于 ,交 于 , ,则 .17. 已知 中,它的三边长 、 、 都是正整数,其中 不是最长边,且满足 ,则符合条件的 的值为 .18. 如图所示, 是等腰直角三角形,其中 , 是 边上的一点,连接 ,过 作 交 于 , ,且 ,连接 并延长,交 于 点.若四边形 的面积为 ,则 的面积为 .
三、解答题
-
19. 计算:(1)、(2)、 .20. 如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后, 的顶点均在格点上.
①画出 关于原点对称的 ;
②画出 向上平移5个单位后的 ,并求出平移过程中线段 扫过的面积.21. 计算:(1)、(2)、 .22. 如图, 与 中, 与 交于点 ,且 , .(1)、求证: ;(2)、当 ,求 的度数?23. 在我市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要 天;若由甲队先做 天,剩下的工程由甲、乙合做 天可完成.(1)、乙队单独完成这项工程需要多少天?(2)、甲队施工一天,需付工程款 万元,乙队施工一天需付工程款 万元,若该工程计划在 天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?24. 如图所示,在 中, , , 是 边上的任意一点,作 交 的延长线于点 ,连接 、 , 于点 .(1)、若 , .求 .(2)、求证: .25. 对于一个各数位上的数字均不为 的三位自然数 ,将它各个数位上的数字平方后再取其个位,得到三个新的数字;再将这三个新数字重新组合成三位数 ,当 的值最小时,称此时的 为自然数 的“理想数”,并规定: ,例如 ,各数字平方后取个位分别为 , , ,再重新组合为 , , , , , ,因为 最小,所以 是原三位数 的理想数,此时(1)、求: .(2)、若有三位自然数 ,满足有两个数位上的数字相同且不等于 ,另一个数位上的数字为 ,求证: .26. 已知 中, , ,点 、 分别是 轴和 轴上的一动点.(1)、如图 ,若点 的横坐标为 ,求点 的坐标;(2)、如图 , 交 轴于 , 平分 ,若点 的纵坐标为 , ,求点 的坐标.(3)、如图 ,分别以 、 为直角边在第三、四象限作等腰直角 和等腰直角 , 交 轴于 ,若 ,求 .