2017年高考真题分类汇编(理数):专题5 解析几何
试卷更新日期:2017-07-20 类型:二轮复习
一、单选题
-
1. 椭圆 + =1的离心率是( )A、 B、 C、 D、2. 已知双曲线C: ﹣ =1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆 + =1有公共焦点,则C的方程为( )A、﹣ =1 B、﹣ =1 C、﹣ =1 D、﹣ =13. 已知双曲线 ﹣ =1(a>0,b>0)的左焦点为F,离心率为 .若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )
A、 =1 B、 =1 C、 =1 D、 =14. 已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1 , l2 , 直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A、16 B、14 C、12 D、105. 若双曲线C: ﹣ =1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为( )A、2 B、 C、 D、6. 已知椭圆C: =1(a>b>0)的左、右顶点分别为A1 , A2 , 且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为( )A、 B、 C、 D、二、填空题
-
7. 若双曲线x2﹣ =1的离心率为 ,则实数m= .8. 在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若 ≤20,则点P的横坐标的取值范围是 .9. 在平面直角坐标系xOy中,双曲线 ﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1 , F2 , 则四边形F1PF2Q的面积是 .10. 已知双曲线C: ﹣ =1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .11. 已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= .12. 在平面直角坐标系xOy中,双曲线 =1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 .
三、解答题
-
13. 设椭圆 + =1(a>b>0)的左焦点为F,右顶点为A,离心率为 .已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为 .
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为 ,求直线AP的方程.
14. 已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)、求抛物线C的方程,并求其焦点坐标和准线方程;(2)、求证:A为线段BM的中点.15. 设O为坐标原点,动点M在椭圆C: +y2=1上,过M做x轴的垂线,垂足为N,点P满足 = .(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点Q在直线x=﹣3上,且 • =1.证明:过点P且垂直于OQ的直线l过C的左焦点F.
16.在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的离心率为 ,焦距为2.(14分)
(Ⅰ)求椭圆E的方程.
(Ⅱ)如图,该直线l:y=k1x﹣ 交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2 , 且看k1k2= ,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.
17.如图,已知抛物线x2=y,点A(﹣ , ),B( , ),抛物线上的点P(x,y)(﹣ <x< ),过点B作直线AP的垂线,垂足为Q.
(Ⅰ)求直线AP斜率的取值范围;
(Ⅱ)求|PA|•|PQ|的最大值.
18.如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1 , 过点F2作直线PF2的垂线l2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线l1 , l2的交点Q在椭圆E上,求点P的坐标.