2017年山东省临沂市中考数学模拟试卷(二)
试卷更新日期:2017-07-20 类型:中考模拟
一、选择题
-
1. ﹣ 的绝对值是( )A、﹣ B、 C、﹣ D、2. 如图,∠1+∠2等于( )A、60° B、90° C、110° D、180°3. 下列运算正确的是( )A、2a+2a=2a2 B、(a3)3=a9 C、a2•a4=a8 D、a6÷a3=a24. 不等式组 的解集在数轴上表示正确的是( )A、 B、 C、 D、5. 如图所示正三棱柱的主视图是( )A、 B、 C、 D、6. 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( )A、 B、 C、 D、7. 以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是( )A、(3,3) B、(5,3) C、(3,5) D、(5,5)8. 速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x个字,根据题意列方程,正确的是( )A、 = B、 = C、 = D、 =9. 在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
成绩
45
46
47
48
49
50
人数
1
2
4
2
5
1
这此测试成绩的中位数和众数分别为( )
A、47,49 B、47.5,49 C、48,49 D、48,5010. 如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分图形的面积为( )A、4π B、2π C、 D、11.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )
A、110 B、158 C、168 D、17812. 一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是( )A、 B、 C、 D、13.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .
其中正确的结论有( )
A、4个 B、3个 C、2个 D、1个14. 如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点C作CD⊥x轴,且OA=AD,则以下结论:①当x>0时,y1随x的增大而增大,y2随x的增大而减小;
②k=4;
③当0<x<2时,y1<y2;
④如图,当x=4时,EF=4.
其中正确结论的个数是( )
A、1 B、2 C、3 D、4二、填空题
-
15. 分解因式:ax2﹣4axy+4ay2= .16. 计算:( + )÷ = .17. 如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则 = .18. 如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为 .19. 如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
如:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i,
(5+i)(3﹣4i)=5×3+5×(﹣4i)+i×3+i×(﹣4i)=15﹣20i+3i﹣4i2=19﹣17i
请根据以上内容的理解,利用以前学习的有关知识将(1+2i)(1﹣3i)化简结果为 .
三、解答题
-
20. 计算: + ﹣ ﹣( )﹣1 .21.
九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)、在这次评价中,一共抽查了名学生;(2)、在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)、请将条形统计图补充完整;
(4)、如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?22. 如图,海中一小岛有一个观测点A,某天上午观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.B处距离观测点30 海里,若该渔船的速度为每小时30海里,问该渔船多长时间到达观测点A的北偏西60°方向上的C处?(计算结果用根号表示,不取近似值)23. 如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)、求证:CB是⊙O的切线;(2)、若∠ECB=60°,AB=6,求图中阴影部分的面积.24. 为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场
乙林场
购树苗数量
销售单价
购树苗数量
销售单价
不超过1000棵时
4元/棵
不超过2000棵时
4元/棵
超过1000棵的部分
3.8元/棵
超过2000棵的部分
3.6元/棵
设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).
(1)、该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为元,若都在乙林场购买所需费用为元;(2)、分别求出y甲、y乙与x之间的函数关系式;(3)、如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?25.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)、当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)、当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3 时,求线段DH的长.
26.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.
(1)、求经过A,B,C三点的抛物线的函数表达式;(2)、点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)、在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.